Publications

  1. Atomically precise vanadium-oxide clusters
    Chakraborty, S.; Petel, B. E., Schreiber, E.; Matson, E. M.*
    Nanoscale Adv., 2021, Advance Article. DOI: 10.1039/D0NA00877J
    Atomically precise vanadium-oxide clusters
  2. Electrocatalytic multielectron nitrite reduction in water by an iron complex
    Stroka, J. R.; Kandemir, B.; Matson, E. M.*; Bren, K. L.*
    ACS Catal., 2020, 23, 13968–13972. DOI: 10.1021/acscatal.0c036000
    Electrocatalytic multielectron nitrite reduction in water by an iron complex
  3. Oxygen-atom Vacancy Formation and Reactivity in Polyoxovanadate Clusters
    Petel, B. E.*; Matson, E. M.*
    Chem. Commun., 2020, 56, 13477-13490 (Invited Article). DOI: 10.1039/D0CC05920J
    Oxygen-atom Vacancy Formation and Reactivity in Polyoxovanadate Clusters
  4. Polyoxometalate-based complexes as platforms for the study of actinide chemistry
    Auvray, T.*; Matson, E. M.*
    Dalton Trans., 2020, 49, 13917-13927 (selected by editor as "Hot Article"). DOI: 10.1039/D0DT02755C
    Polyoxometalate-based complexes as platforms for the study of actinide chemistry
  5. Characterizing polyoxovanadate-alkoxide clusters using vanadium K-edge X-ray absorption spectroscopy
    Meyer, R. L.; Greer, S. M.; Blake, A. V.; Cary, S. K.; Ditter, A. S.; Daly, S. R.; Li, F.; Kozimor, S. A.*; Matson, E. M.*; Mocko, V.; Seidler, G. T.; Stein, B. W.*; Weinstein, S. D.
    Chem. Eur. J., 2020, Accepted Manuscript. DOI: 10.1002/chem.202003625
    Characterizing polyoxovanadate-alkoxide clusters using vanadium K-edge X-ray absorption spectroscopy
  6. Physicochemical factors that influence the deoxygenation of oxyanions in atomically-precise, oxygen-deficient vanadium oxide assemblies
    Petel, B. E.; Matson, E. M.*
    Inorg. Chem., 2020, Accepted Manuscript.. DOI: 10.1021/acs.inorgchem.0c02052
    Physicochemical factors that influence the deoxygenation of oxyanions in atomically-precise, oxygen-deficient vanadium oxide assemblies
  7. Hydrogen bonding promotes diversity in nitrite coordination modes at a single iron(II) center
    Dissanyake, D. M. M. M.; Petel, B. E.; Brennessel, W. W.; Bren, K. L.*; Matson, E. M.*
    J. Coord. Chem., 2020, Accepted Manuscript (Invited Article: Enbo Wang Memorial Issue). DOI: 10.1080/00958972.2020.182137
    Hydrogen bonding promotes diversity in nitrite coordination modes at a single iron(II) center
  8. Enhancing the Activity of Photocatalytic Hydrogen Production from CdSe Quantum Dots with Polyoxovanadate Clusters
    Edwards, E. H.‡; Fertig, A. A.‡; McClelland, K. P.; Tilahun, M.; Chakraborty, S.; Krauss, T. D.*; Bren, K. L.*; Matson, E. M.*
    Chem. Commun., 2020, Accepted Manuscript. DOI: 10.1039/D0CC03163A
    Enhancing the Activity of Photocatalytic Hydrogen Production from CdSe Quantum Dots with Polyoxovanadate Clusters
  9. Conversion of a cyclic polyoxovanadate-alkoxide cluster to its Lindqvist congener: Insights into thermodynamic and kinetic products in polyoxovanadate clusters
    Meyer, R. L.; Love, R.#; Matson, E. M.*
    Chem. Commun., 2020, Accepted Manuscript. DOI: 10.1039/D0CC03464A
    Conversion of a cyclic polyoxovanadate-alkoxide cluster to its Lindqvist congener: Insights into thermodynamic and kinetic products in polyoxovanadate clusters
  10. Acid-induced, oxygen-atom vacancy formation in reduced polyoxovanadate-alkoxide clusters
    Schreiber, E.; Petel, B. E.; Matson, E. M.*
    J. Am. Chem. Soc., 2020, 142, 9915-9919. DOI: 10.1021/jacs.0c03864
    Acid-induced, oxygen-atom vacancy formation in reduced polyoxovanadate-alkoxide clusters
  11. Synthetic insights into the site-selective halogenation of mixed-valent polyoxovanadate-alkoxide clusters
    Maiola, M. L.#; Petel, B. E.; Brennessel, W. W.; Matson, E. M.*
    Dalton Trans., 2020, ASAP (Invited Article: Dalton Transactions New Talents: Americas). DOI: 10.1039/D0DT01077D
    Synthetic insights into the site-selective halogenation of mixed-valent polyoxovanadate-alkoxide clusters
  12. Electrochemical consequences of ligand substitution at heterometal centers in polyoxovanadium clusters: Controlling the redox properties via heterometal coordination number
    Meyer, R. L.; Anjass, M. H.*; Petel, B. E.; Brennessel, W. W.; Streb, C.*; Matson, E. M.*
    Chem. Eur. J., 2020, ASAP. DOI: 10.1002/chem.2019/05624
    Electrochemical consequences of ligand substitution at heterometal centers in polyoxovanadium clusters: Controlling the redox properties via heterometal coordination number
  13. Site-selective halogenation of polyoxovanadate clusters: Atomically precise models for electronic effects of anion doping in VO2 with relevance to smart window applications
    Petel, B. E.‡; Meyer, R. L.‡; Maiola, M. L.; Brennessel, W. W.; Müller, A. M.*; Matson, E. M.*
    J. Am. Chem. Soc., 2020, 143, 1049-1056. DOI: 10.1021/jacs.9b11874
    Site-selective halogenation of polyoxovanadate clusters: Atomically precise models for electronic effects of anion doping in VO<sub>2</sub> with relevance to smart window applications
  14. Conversion of NOx1- (x = 2, 3) to NO using an oxygen-deficient polyoxovanadate-alkoxide cluster
    Petel, B. E.; Matson, E. M.*
    Chem. Commun., 2020, 56, 555-558. DOI: 10.1039/C9CC08230A
    Conversion of NO<sub>x</sub><sup>1-</sup> (x = 2, 3) to NO using an oxygen-deficient polyoxovanadate-alkoxide cluster
  15. Cation interactions with molecular vanadium oxide clusters: Observations of capacitive and pseudocapacitive behavior within a single complex
    Schreiber, E.‡; Hartley, N. A.‡; Cook, T. R.; McKone, J. P.*; Matson, E. M.*
    ACS Appl. Energ. Mat., 2019, 2, 8985-8993. DOI: 10.1021/acsaem.9b02239
    Cation interactions with molecular vanadium oxide clusters: Observations of capacitive and pseudocapacitive behavior within a single complex
  16. Surface functionalization of polyoxovanadium clusters: Generation of highly soluble charge carriers for nonaqueous energy storage
    VanGelder, L. E.; Pratt III, H. D.; Anderson, T. M.; Matson, E. M.*
    Chem. Commun., 2019, 55, 12247-12250. DOI: 10.1039/C9CC05380H
    Surface functionalization of polyoxovanadium clusters: Generation of highly soluble charge carriers for nonaqueous energy storage
  17. Investigation of cubic Fe4M4 frameworks for application in nonaqueous electrochemical energy storage
    VanGelder, L. E.; Schreiber, E.; Wind, M.-L.; Brennessel, W. W.; Limberg, C.; Matson, E. M.*
    Chem. Eur. J., 2019, 25, 14421-14430. DOI: 10.1002/chem201903360
    Investigation of cubic Fe<sub>4</sub>M<sub>4</sub> frameworks for application in nonaqueous electrochemical energy storage
  18. Oxygen atom transfer with organofunctionalized polyoxovanadium clusters: O-atom vacancy generation with tertiary phosphines and deoxygenation of styrene oxide
    Petel, B. E.; Meyer, R. L.; Brennessel, W. W.; Matson, E. M.*
    Chem. Sci., 2019, 10, 8035-8045. DOI: 10.1039/C9SC02882J
    Oxygen atom transfer with organofunctionalized polyoxovanadium clusters: O-atom vacancy generation with tertiary phosphines and deoxygenation of styrene oxide
  19. Ligand Derivatization of Titanium-functionalized Polyoxovanadium-alkoxide Clusters
    VanGelder, L.E.; Brennessel, W.W.; Matson, E.M.*
    Polyhedron, 2019, 167, 119-126 (Invited Article: Women with MOxy: Metal Oxide Chemistry from Female Investigators). DOI: 10.1016/j.poly.2019.04.022
    Ligand Derivatization of Titanium-functionalized Polyoxovanadium-alkoxide Clusters
  20. Controlling Metal-to-Oxygen Ratios via M=O Bond Cleavage in Polyoxovanadate Alkoxide Clusters
    Petel, B.E.; Fertig, A.A.; Maiola, M.L.; Brennessel, W.W.; Matson, E.M.*
    Inorg. Chem., 2019, 58, 10462-10471 (Invited Forum Article: Celebrating the Year of the Periodic Table: Emerging Investigators in Inorganic Chemistry Issue). DOI: 10.1021/acs.inorgchem.9b00389
    Controlling Metal-to-Oxygen Ratios via M=O Bond Cleavage in Polyoxovanadate Alkoxide Clusters
  21. Consequences of ligand derivatization on the electronic properties of polyoxovanadate-alkoxide clusters
    Schurr, B. E.; Nachtigall, O.; VanGelder, L.E.; Drappeau, J.; Brennessel, W.W.; Matson, E.M.*
    J. Coord. Chem., 2019, 72, 1267-1286 (Invited Article: Emerging Leader Issue). DOI: 10.1080/00958972.2019.1595605
    Consequences of ligand derivatization on the electronic properties of polyoxovanadate-alkoxide clusters
  22. Progress in the Design of Polyoxovanadate-Alkoxides as Charge Carriers for Nonaqueous Redox Flow Batteries
    VanGelder, L.E.; Cook, T.R.; Matson, E.M.*
    Comment Inorg. Chem., 2019, 39, 51-89. DOI: 10.1080/02603594.2019.1587612
    Progress in the Design of Polyoxovanadate-Alkoxides as Charge Carriers for Nonaqueous Redox Flow Batteries
  23. Physicochemical implications of alkoxide "mixing" in polyoxovanadium clusters for nonaqueous energy storage
    VanGelder, L.E.; Schreiber, E.; Matson, E.M.*
    J. Mat. Chem. A, 2019, 7, 4893-4902. DOI: 10.1039/C8TA12306C
    Physicochemical implications of alkoxide "mixing" in polyoxovanadium clusters for nonaqueous energy storage
  24. Transport and Electron Transfer Kinetics of Polyoxovanadate-Alkoxide Clusters
    Kosswattaarachchi, A.M.; VanGelder, L.E.; Nachtigall, O.; Hazelnis, J.P.; Brennessel, W.W.; Matson, E.M.*; Cook, T.R.
    J. Electrochem. Soc., 2019, 166(4), A464-472. DOI: 10.1149/2.1351902jes
    Transport and Electron Transfer Kinetics of Polyoxovanadate-Alkoxide Clusters
  25. Organic functionalization of polyoxovanadate-alkoxide clusters: Improving the solubility of multi metallic charge carriers for nonaqueous redox flow batteries
    VanGelder, L.E.; Petel, B.E.; Nachtigall, O.; Martinez, G.; Brennessel, W.W.; Matson, E.M.*
    ChemSusChem, 2018, 13, 4139-4149. DOI: 10.1002/cssc.201802029
    Organic functionalization of polyoxovanadate-alkoxide clusters: Improving the solubility of multi metallic charge carriers for nonaqueous redox flow batteries
  26. Synthesis of a gallium-functionalized polyoxovanadate-alkoxide cluster: Toward a general route for heterometal installation
    Meyer, R.M.; Brennessel, W.W.; Matson, E.M.*
    Polyhedron, 2018, 156, 303-311. DOI: 10.1016/j.poly.2018.09.024
    Synthesis of a gallium-functionalized polyoxovanadate-alkoxide cluster: Toward a general route for heterometal installation
  27. Nitric oxide activation facilitated by the cooperative multimetallic reactivity of iron-functionalized polyoxovanadate-alkoxide clusters
    Li, F.; Meyer, R.; Carpenter, S.H.; VanGelder, L.E.; Nichols, A.W.; Machan, C.W.; Neidig, M.L.; Matson, E.M.*
    Chem. Sci., 2018, 9, 6379-6389 http://pubs.rsc.org/en/content/articlelanding/2018/sc/c8sc00987b#!divAbstract. DOI: 10.1039/C8SC00987B
    Nitric oxide activation facilitated by the cooperative multimetallic reactivity of iron-functionalized polyoxovanadate-alkoxide clusters
  28. Heterometal functionalization yields improved energy density for charge carriers in nonaqueous redox flow batteries
    VanGelder, L.E.; Matson, E.M.*
    J. Mat. Chem. A, 2018, 6, 13874-13882. DOI: 10.1039/C8TA03312A
    Heterometal functionalization yields improved energy density for charge carriers in nonaqueous redox flow batteries
  29. Oxygen-Atom Vacancy Formation at Polyoxovanadate Clusters: Homogeneous Models for Reducible Metal Oxides
    Petel, B.E.; Brennessel, W.W.; Matson, E.M.*
    J. Am. Chem. Soc., 2018, 140, 8424-8428. DOI: 10.1021/jacs.8b05298
    Oxygen-Atom Vacancy Formation at Polyoxovanadate Clusters: Homogeneous Models for Reducible Metal Oxides
  30. Manganese-Catalyzed Kumada Cross-Coupling Reactions of Aliphatic Grignard Reagents with N-Heterocyclic Chlorides
    Petel, B.E.; Purak, M.; Matson, E.M.*
    Synlett, 2018, 29, 1700-1706. DOI: 10.1055/s-0037-1610200
    Manganese-Catalyzed Kumada Cross-Coupling Reactions of Aliphatic Grignard Reagents with N-Heterocyclic Chlorides
  31. Site-selectivity in the halogenation of titanium-functionalized polyoxovanadate–alkoxide clusters
    VanGelder, L.E.; Forrestel, P.L.; Brennessel, W.W.; Matson, E.M.*
    Chem. Commun., 2018, 54, 6839-6842 (Invited Article: Emerging Investigators Issue). DOI: 10.1039/C8CC01517A
    Site-selectivity in the halogenation of titanium-functionalized polyoxovanadate–alkoxide clusters
  32. Polyoxovanadate-alkoxide Clusters as Multi-electron Charge Carriers for Symmetric Non-aqueous Redox Flow Batteries
    VanGelder, L.E.; Kosswattaarachchi, A.M.; Forrestel, P.L.; Cook, T.R.*; Matson, E.M.*
    Chem. Sci., 2018, 9, 1692-1699. DOI: 10.1039/C7SC05295B
    Polyoxovanadate-alkoxide Clusters as Multi-electron Charge Carriers for Symmetric Non-aqueous Redox Flow Batteries
  33. Tuning the Redox Profiles of Polyoxovanadate-alkoxide clusters via Heterometal Installation: Toward Designer Redox Reagents
    VanGelder, L.E.; Brennessel, W.W.; Matson, E.M.*
    Dalton Trans., 2018, 47, 3698-3704 (Cover Article). DOI: 10.1039/C7DT04455K
    Tuning the Redox Profiles of Polyoxovanadate-alkoxide clusters via Heterometal Installation: Toward Designer Redox Reagents
  34. Polyoxovanadate – Alkoxide Clusters as a Redox Reservoir for Iron
    Li, F.; Carpenter, S.H.; Higgins, R.F.; Hitt, M.G.; Brennessel, W.W.; Ferrier, M.G.; Cary, S.K.; Lezama-Pacheco, J.S.; Wright, J.T.; Stein, B.W.; Shores, M.P.; Neidig, M.L.; Kozimor, S.A.; Matson, E.M.*
    Inorg. Chem., 2017, 56, 7065-7080. DOI: inorgchem.7b00650
    Polyoxovanadate – Alkoxide Clusters as a Redox Reservoir for Iron
  35. Self-Assembled, Iron-Functionalized Polyoxovanadate Alkoxide Clusters
    Li, F.; VanGelder, L.E.; Brennessel, W.W.; Matson, E.M.*
    Inorg. Chem., 2016, 55, 7332-7334. DOI: inorgchem.6b01349
    Self-Assembled, Iron-Functionalized Polyoxovanadate Alkoxide Clusters

Prior to University of Rochester

  1. Characterization of Terminal Iron(III)-oxo and Iron(III)-hydroxo Complexes Derived from O2 Activation
    Gordon, Z.; Matson, E.M.: Burgess, M.; Miller, T.; Drummond, M.; Lord, R.; Popescu, C.; Rodriguez-Lopez, J.; Fout, A.R.*
    Inorg. Chem., 2019, 23, 15801-15811
  2. Synthesis and Characterization of (DIPPCCC)Fe Complexes: A Zwitterionic Metalation Method and CO2 Reactivity
    Jackson, B. J.; Najera, D.; Matson, E. M.; Woods, T.; Bertke, J. A.; Fout, A.R.*
    Organometallics, 2019, 38, 2943-2952
  3. Tuning the Fe(II/III) Redox Potential in Nonheme Fe(II)-Hydroxo Complexes through Primary and Secondary Coordination Sphere Modifications
    Ford, C.L.; Park, Y.-J; Matson, E.M.; Gordon, Z.; Fout, A.R.*
    Inorg. Chem., 2017, 56, 4852-4863
  4. A Bio-inspired Iron Catalyst for Nitrate and Perchlorate Reduction
    Gordon, Z.G.; Drummond, M.J.; Matson, E.M.; Bogart, J.A.; Schelter, E.J.; Lord, R.L.; Fout, A.R.*
    Science, 2016, 354, 741-743
  5. Expanding the Family of Uranium(III) Alkyls: Synthesis and Characterization of Mixed Ligand Derivatives
    Matson, E.M.; Kiernicki, J.J.; Fanwick, P.E.; Bart, S.C.*
    Eur. J. Inorg. Chem., 2016, 2527-2533
  6. Monoanionic Bis(Carbene) Pincer Complexes Featuring Cobalt(I-III) Oxidation States
    Ibrahim, A.D.; Tokmic, K.; Brennan, M.R.; Kim, D.; Matson, E.M.; Nilges, M.J.; Bertke, J.A.; Fout, A.R.*
    Dalton Trans., 2016, 45, 9805-9811
  7. Synthesis and Characterization of Thermochromic Metal Complexes with a Near Room Temperature High-Spin to Low-Spin Crossover
    Konkol, A.J.; Richad A.J.; Matson, E.M.; Caradonna, J.P.; O’Donnell, J.L.; Karr, J.W.
    Chem. Educator, 2015, 20, 229-233
  8. Synthesis and characterization of M(II) (M = Mn, Fe, Co) azafulvene complexes and their X3- derivatives
    Matson, E.M.; Park, Y.J.; Bertke, J.A.; Fout, A.R.*
    Dalton Trans., 2015, 44, 10377-10384
  9. Nickel(II) Pincer Complexes: Oxidative addition of C-H Bond to form Ni(II)-H
    Matson, E. M.; Espinoza Martinez, G.; Ibrahim, A.; Jackson, B.J.; Bertke, J.A.; Fout, A.R.*
    Organometallics, 2015, 34, 399-407 (Cover Article). DOI: 10.1021/om5007177
  10. Exploring Mn-O bonding in the Context of an Electronically Flexible 2 Coordination Sphere: Synthesis of a Mn(III)-Oxo
    Park, Y.J.; Matson, E.M.; Nilges, M.J.; Fout, A.R.*
    Chem. Commun., 2015, 51, 5310-5313 (δAuthors contributed equally, Invited Article: Young Investigator Issue)
  11. Facile Nitrite Reduction in a Non-heme Iron System: Formation of an Iron(III)-Oxo
    Matson, E.M.; Park, Y.J., Fout, A.R.*
    J. Am. Chem. Soc., 2014, 136, 17398-17401. DOI: 10.1021/ja510615p
  12. Trivalent Uranium Phenylchalcogenide Complexes: Exploring the Bonding and Reactivity with CS2 in the Tp*2UEPh Series (E = O, S, Se, Te)
    Matson, E. M.; Breshears, A. T.; Newell, B.S.; Fanwick, P.E.; Shores, M.P.*; Walensky, J.*; Bart, S.C.*
    Inorg. Chem., 2014, 53, 12977-12985. DOI: 10.1021/ic5020658
  13. Isolation of a Uranium(III) Benzophenone Ketyl Radical that Displays Redox-Active Ligand Behaviour
    Matson, E.M.; Kiernicki, J.J.; Anderson, N.H.; Fanwick, P.E.; Bart, S.C.*
    Dalton Trans., 2014, 43, 17885-17888. DOI: 10.1039/c4dt01636j
  14. Meridional vs. Facial Coordination Geometries of a Dipodal Ligand Framework Featuring a Secondary Coordination Sphere
    Matson, E. M.; Gordon, Z.; Fout, A. R.*
    Dalton Trans., 2014, 43, 16992-16995. DOI: 10.1039/c4dt02327g
  15. Isolation of Iron(II) Aqua and Hydroxo Complexes Featuring a Tripodal Hydrogen-Bond Donor and Acceptor Ligand
    Matson, E.M., Bertke, J. A.; Fout, A.R.*
    Inorg. Chem., 2014, 53, 4450-4458. DOI: 10.1021/ic500102c
  16. Multi-Electron C-O Bond Activation Mediated by a Family of Reduced Uranium Complexes
    Kiernicki, J.J.; Newell, B.S.; Matson, E.M.; Fanwick, P.E.; Shores, M.P.; Bart, S.C.*
    Inorg. Chem., 2014, 53, 3730-3741. DOI: 10.1021/ic500012x
  17. Radical Reductive Elimination from Tetrabenzyluranium Mediated by an Iminoquinone Ligand
    Matson, E.M.; Franke, S.; Anderson, N.A.; Cook, T.D.; Fanwick, P.E.; Bart, S.C.*
    Organometallics, 2014, 33, 1964-1971. DOI: 10.1021/om4012104
  18. Tris(phosphinoamide)-supported Uranium-Cobalt Heterobimetallic Complexes Featuring Co-U Dative Interactions
    Napoline, J.W.; Kraft, S.J.; Matson, E.M.; Fanwick, P.E.; Bart, S.C.*; Thomas, C.M.*
    Inorg. Chem., 2013, 52, 12170-12177. DOI: 10.1021/ic402343q
  19. Synthesis of Terminal Uranium(IV) Disulfido and Diselenido Compounds by Activation of Elemental Sulfur and Selenium
    Matson, E.M.; Goshert, M.D.; Kiernicki, J.J.; Newell, B.S.; Fanwick, P.E.; Shores, M.P.*; Walensky, J.*; Bart, S.C.*
    Chem. Eur. J., 2013, 19, 16176-16180. DOI: 10.1002/chem.201303095
  20. "Oxidative Addition" of Halogens to U(IV) Bis(Amidophenolate) Complexes
    Matson, E.M.; Opperwall, S.R.; Fanwick, P.E.; Bart, S.C.*
    Inorg. Chem., 2013, 52, 7295-7304. DOI: 10.1021/ic4009812
  21. Synthesis and Reactivity of Trivalent Tp*U(CH2Ph)2(THF): Insertion vs Oxidation at Low-Valent Uranium
    Matson, E.M.; Forrest, W.P.; Fanwick, P.E.; Bart, S.C.*
    Organometallics, 2013, 32, 1484-1492 (Invited Article: Recent Advances in f-Element Organometallic Chemistry). DOI: 10.1021/om301139h
  22. Diazoalkane Reduction for the Synthesis of Uranium Hydrazonido Complexes
    Matson, E.M.; Fanwick, P.E.; Bart, S.C.*
    Eur. J. Inorg. Chem., 2012, 33, 5471-5478 (Cover Article). DOI: 10.1002/ejic.201200606
  23. Use of Alkylsodium Reagents for the Synthesis of Trivalent Uranium Alkyl Complexes
    Matson, E.M.; Forrest, W.P.; Fanwick, P.E.; Bart, S.C.*
    Organometallics, 2012, 31, 4467-4473. DOI: 10.1021/om3002763
  24. Synthesis of U(IV) Imidos from Tp*2UCH2Ph by Extrusion of Bibenzyl
    Matson, E.M.; Crestani, M.G.; Fanwick, P.E.; Bart, S.C.*
    Dalton Trans., 2012, 41, 7952-7958 (Invited Article: New Talent Americas). DOI: 10.1039/c2dt12439d
  25. Formation of Trivalent U-C, U-N, and U-S Bonds and their Reactivity Towards Carbonyls
    Matson, E.M.; Fanwick, P.E.; Bart, S.C.*
    Organometallics, 2011, 30, 5753-5762. DOI: 10.1021/om200612h
  26. Functionalization of Carbon Dioxide and Carbon Disulfide Using a Uranium(III) Alkyl Complex
    Matson, E.M.; Forrest, W.P.; Fanwick, P.E.; Bart, S.C.*
    J. Am. Chem. Soc., 2011, 133, 4948-4954. DOI: 10.1021/ja110158s