SURVEY

$\gamma-\gamma$ Correlations in e^+-e^- Annihilation and Nuclear Decay
Positronium and e^+e^- Annihilation

Para Positronium

\[\vec{I} = 0 \]

\[\vec{s}_2 \]

\[E = 0 \text{ eV} \]

Ortho Positronium

\[\vec{I} = 1 \]

\[\vec{s}_2 \]

\[E = 8 \cdot 10^{-4} \text{ eV} \]

\[\sigma_{2\gamma} = \pi r_0^2 \cdot \frac{\nu_{e^+e^-}}{c} \]

\[\sigma_{2\gamma}/\sigma_{3\gamma} = 372 \]

\[\tau_{3\gamma}(n) = 1.4 \cdot 10^{-7} n^3 \text{ sec} \]

\[r_0 = 2.818 \text{ fm, class. el. radius} \]

Decay at rest:

\[2E_\gamma \approx E_0 \approx 1.022 \text{ MeV} \]

\[\theta_{12} \approx 180^0 \]

2-body decay → line spectrum in \(E_\gamma \) and \(\theta_{12} \)

\[\tau_{2\gamma}(n) = 1.25 \cdot 10^{-10} n^3 \text{ sec} \]

\(n = \text{principal quantum } \# \)

3-body decay → continuum in \(E_\gamma \) and \(\theta_{12} \)
Radiation Detectors for Medical Imaging

Positron emission tomographic (PET) virtual slice through patient’s brain

Administer to patient radioactive water: $H_2^{17}O$ radioactive acetate: $^{11}CH_3COOX$

Observe ^{17}O or ^{11}C β^+ decay by

$$e^+ + e^- \rightarrow 2\gamma(511\, keV)$$

Positron e^+ (anti-matter) annihilates with electron e^- (its matter equivalent of the same mass) to produce pure energy (photons, γ-rays). Energy and momentum balance require back-to-back (180^0) emission of 2 γ-rays of equal energy

γ Detectors (NaI(Tl))
Top left: PET imaging experiment setup with two 1.5”x1.5” NaI(Tl) detectors (BICRON) on a slotted correlation table. A “point-like” $^{22}\text{Na} \gamma$ source can be hidden from view.
Top right: $^{22}\text{Na} \gamma$ spectrum measured with NaI$_1$.
Bottom right: $\gamma - \gamma$ angular correlation measurement.

Second correlation setup: NaI(Tl) vs. HPGe
$E_1 - E_2 - \Delta t$ Multi-Parameter Measurement

$\gamma - \gamma$ cascade (60Ni) or PET experiment, full 3D energy-time distribution.
$E_1 - E_2$ Dual-Parameter Measurement

$\gamma - \gamma$ cascade (60Ni) or PET experiment, full 2D spectrum

Diagram showing the flow of signals through preamps, amplifiers, coincidence generators, and energy detectors, leading to data acquisition (DAQ).
2D Parameter Measurement

2D Scatter Plot: Each point represents one event \{E_1, E_2\}

Projection on \(E_1 \) axis

Projection on \(E_2 \) axis
Gated E₁-E₂ Coincidence Measurement

$\gamma-\gamma$ cascade (60Ni) or PET experiment, gates on γ_1 and γ_2 lines

Diagram:
- Amp
- SCA
- Gate Generator
- Coincidence
- OR
- Energy 1
- Energy 2
- Strobe
- Pulser
- Counter
- Pulse Generator
- Dead time measurement
- DAQ
Absolute Activity Measurement

Activity A [disintegrations/time], independent radiation types $i = 1, 2$ detection probabilities P_i

- $N_1 = A \cdot P_1$
- $N_2 = A \cdot P_2$
- $P_{12} = P_1 \cdot P_2$
- $N_{12} = A \cdot P_{12}$

Individual rates

Coincidence rate

Singles / Coincidence

$$A = \frac{N_1 \cdot N_2}{N_{12}} = \frac{A \cdot P_1 \cdot A \cdot P_2}{A \cdot P_{12}}$$
SURVEY

\(\gamma - \gamma\) Correlations in Nuclear Decay
Symmetries of the Nuclear Mean Field

Nucleon-nucleon forces are dominantly radial

\[U(\vec{r}_1, \vec{r}_2) = U(|\vec{r}_1 - \vec{r}_2|) \]

Nuclear mean field per nucleon

\[\tilde{U} = \frac{1}{2A} \sum_{i,j} U(|\vec{r}_i - \vec{r}_j|) \]

\[U(\vec{r}) \approx \tilde{U}(r) \text{ central potential, no angle dependence} \]

→ **Invariance against space inversion, rotations**
→ **Conservation of parity and angular momentum**

\[(= \text{quantum duality}) \]

\[\hat{H} = \sum_{i=1}^{A} \left\{ \frac{\hat{p}_i^2}{2m_i} + \tilde{U}(|\vec{r}_i|) \right\} \rightarrow [\hat{H}, \hat{\Pi}] = 0 = [\hat{H}, \hat{R}] \]

because \[\hat{\Pi} \hat{p}_{ix}^2 = -\hbar^2 \frac{\partial^2}{\partial(-x_i)^2} = \hat{p}_{ix}^2 \] and \[\tilde{U}(|\vec{r}_i|) = \tilde{U}(|\vec{r}_i|) \]

and \[\hat{R}_z \tilde{U}(|\vec{r}_i|) = \tilde{U}(|\vec{r}_i|) = \tilde{U}(|\vec{r}_i|) \]

and \[\hat{R}_z \hat{p}_i^2 = \hat{p}_i^2 \]
Stationary Nuclear States

Consequences of space-inversion and rotational invariance:
Stationary states \hat{H} eigen states are also eigen states of $\hat{\Pi}$ and \hat{L}, \hat{L}_z

Radial (r) and angular (θ, ϕ) degrees of freedom are independent \Rightarrow
Separate d.o.f in Schrödinger Equ. \Rightarrow Product wave functions

$\hat{H} j_n(r) = E_n j_n(r)$ stationary states

Operator for rotations: $\hat{R}_z(\varphi_z) = e^{-i \varphi_z \hat{L}_z}$

$\left[\hat{H}, \hat{R}_z(\varphi_z) \right] = 0 \Rightarrow \left[\hat{H}, \hat{L}_z \right] = 0 = \left[\hat{H}, \hat{L}^2 \right]$

$\hat{L}^2 Y_m^\ell(\theta, \phi) = \ell(\ell + 1)\hbar^2 \cdot Y_m^\ell(\theta, \phi)$

$\hat{L}_z Y_m^\ell(\theta, \phi) = m\hbar \cdot Y_m^\ell(\theta, \phi)$

$\hat{\Pi} Y_m^\ell = (-)^\ell Y_m^\ell$ Parity $\pi = (-)^\ell = \begin{cases} + \\ - \end{cases}$

$\psi_{n, \ell, m}(r, \theta, \phi) = j_n^\ell(r) \cdot Y_m^\ell(\theta, \phi)$

Spherical Harmonics or (axial symmetry) Legendre Polynomials
Electromagnetic Nuclear Transitions

Conserved: Total energy \((E) \), total angular momentum \((I) \) and total parity \((\pi) \):

\[
E_i = E_f + E_\gamma \quad I_i = I_f + I_\gamma \quad \pi_i = \pi_f \cdot \pi_\gamma
\]

\[
\begin{align*}
E_i & = 2^+ \\
1^- & = 0^+ \\
E_f & = 1^- \\
0^+ & = 0^+ \\
\end{align*}
\]

Initial Nucl. State \(j_{22}(r) \cdot Y_{m_j}^{2}(\theta, \varphi) \)

Final Nucl. State \(j_{11}(r) \cdot Y_{m_f}^{1}(\theta, \varphi) \)

Photon WF \(\psi_{\Delta E}(r_\gamma) \cdot Y_{\mu=\Delta m}^{\ell=\Delta I}(\theta, \varphi) \)

Consider here only \textit{electric} multipole transitions. Neglect weaker \textit{magnetic} transitions due to changes in current distributions.
Protons in nuclei = moving charges \rightarrow emits electromagnetic radiation

Propagating Electric Dipole Field

E. Segré: *Nuclei and Particles*, Benjamin&Cummins, 2nd ed. 1977
Selection Rules for Electromagnetic Transitions

Conserved: Total energy (E), total angular momentum (I) and total parity (π):

$$E_i = E_f + E_\gamma \quad \vec{I}_i = \vec{I}_f + \vec{I}_\gamma \quad \pi_i = \pi_f \cdot \pi_\gamma$$

Quantization axis: z direction. Physical alignment of I possible (B field, angular correlation)

Coupling of Angular Momenta

Angular momenta \vec{I}_i, \vec{I}_f

direction undetermined.

Projections conserved

$m_i, m_f, \quad m_\gamma = m_i - m_f$

$$\rightarrow |\vec{I}_i - \vec{I}_f| \leq \ell_\gamma \leq |\vec{I}_i + \vec{I}_f|$$

Electric dipole radiation [$\ell_\gamma = 1(\hbar)$]:

$I_f = I_i, \quad I_i \pm 1(\hbar) \quad m_f = m_i, m_i \pm 1$
Spherical Harmonics $P_1^{|m|}\cos (m\phi)$

Plot $\text{Re } Y^m_m \propto P_1^{|m|}\cos (m\phi)$

$$\vec{r}(r, \theta, \phi) = \{1, P_1^{|m|}(\theta), \cos(m\phi)\}$$

$x = r \sin(\theta) \cos(\phi)$

$y = r \sin(\theta) \sin(\phi)$

$z = r \cos(\theta)$

$$|Y^1_{\pm 1}(\theta)|^2 \propto \frac{1}{2} \left(1 + \cos^2 \theta\right)$$ Emission in z direction

$$|Y^1_0(\theta)|^2 \propto \sin^2 \theta$$ Emission perpend. to z

$$W(\theta) = \frac{P(m = 0)}{1/3} |Y^1_0(\theta)|^2 + \frac{P(m = \pm 1)}{2 \times 1/3} |Y^1_1(\theta)|^2$$

Gamma-Gamma Correlations
γ–γ Angular Correlations

Simple example: γ cascade 0 → 1 → 0
Mostly Δm=±1 emitted in z-direction

General Expression for γ–γ angular correlation

\[W_{\gamma_1\gamma_2}(\theta) = \sum_{n=0}^{\ell} A_{2n} P_{2n}(\cos \theta) \propto 1 + A'_2 \cos^2 \theta + \ldots \]

Typically: n ≤ 2. Legendre Polynomials \(P_n(\cos \theta) \)
E2 $\gamma-\gamma$ Angular Correlations

Example: Rotational E2-γ cascade, $\Delta m=\pm 2$ maximally emitted in z-direction

$\ell = 2 \rightarrow$ highest order P_4

$W(\theta) = 1 + 0.1020 \cdot P_2(\cos \theta) + 0.0091 \cdot P_4(\cos \theta)$

Anisotropy

$A_{\gamma\gamma} := \frac{W(90^0) - W(180^0)}{W(180^0)} = \sum_{n=1}^{n_{\text{max}}} A'_{2n}$

No More Correlations
Gamma-Gamma Correlations