Kinetics of Nuclear Decay

Nuclear Decay Types

There are many unstable nuclei - in nature Nuclear Science began with Henri Becquerel's discovery (1896) of uranium radioactivity and man-made:

³⁰ Al(α , n)³⁰ P $\xrightarrow{\beta^+}$ ³⁰ Si Joliot & Curie, 1934 Th - α source, $E_{\alpha} \approx 6$ MeV

N neutron number Z proton number A=N+Z Types of decay: α decay : ${}^{A}_{Z}X_{N} \rightarrow {}^{A-4}_{Z-2}Y_{N-2} + \alpha$ β^{-} decay : ${}^{A}_{Z}X_{N} \rightarrow {}^{A}_{Z\perp 1}Y_{N-1} + e^{-} + \overline{V}_{a}$ β^+ decay : ${}^A_Z X_N \rightarrow {}^A_{Z-1} Y_{N+1} + e^+ + v_e$ "weak" interactions e^{-} capture : ${}^{A}_{Z}X_{N} + e^{-} \rightarrow {}^{A}_{Z-1}Y_{N+1} + v_{e}$ μ^{-} capture : ${}^{A}_{Z}X_{N} + \mu^{-} \rightarrow {}^{A}_{Z-1}Y_{N+1} + v_{\mu}$ γ decay : ${}^{A}_{Z}X^{**}_{N} \rightarrow {}^{A}_{Z}X^{*}_{NN} + \gamma$ Fission : ${}^{A}_{Z}X_{N} \rightarrow {}^{A_{1}}_{Z}F_{N, +} + {}^{A-A_{1}-x-y}_{Z-Z_{1}-y}F_{N-N_{1}-x} + xn + yp$ Various rare heavy particle(cluster) decays

Beta Decays of Odd-A and Even-A Nuclei

$$m(A,Z) = \alpha(A) - \beta(A)Z + \gamma(A)Z^{2} \pm \Delta$$

$$m = m_{\min}: Z_{A} = \frac{\beta}{2\gamma} = \frac{\left[4a_{s} + \left(m_{n} - m_{p} - m_{e}\right)c^{2}\right]A}{2\left(4a_{s} + a_{c}A^{2/3}\right)} \qquad \Delta = \begin{cases} +\frac{11.2}{\sqrt{A}}MeV \ o - o \\ 0 \ MeV \ A = odd \\ -\frac{11.2}{\sqrt{A}}MeV \ e - e \end{cases}$$

Expand around Z_A: Mass parabola bottom of valley

$$m(Z) \approx \left[\tilde{\alpha}(A) \pm \Delta \right] + \tilde{\beta} \left(Z - Z_A \right)^2$$

 $^{\circ}$

Observing a Finite Lifetime of the ¹⁹⁸Au g.s.

Measuring "Decay Curves": Fast-Slow Signal Processing

Measured: Energy and time of arrival $\Delta t = t - t_0$ (relative to an external time-zero t_0) for radiation (e.g., γ -rays), energy discriminator to identify events (ΔA) in a certain energy interval ΔE by setting an identifier "tag."

Calibrate Δt axis channel $\# \rightarrow time$ units (s, y,...) Watch that Λ t-channel $\ll \tau$.

Kinetics of Nuclear Decay: Logarithmic Decay Law

First-order process: *Activity* =#*of decays/unit time* $\left| A = -\dot{N} = -\frac{d}{dt} N(t) = \lambda \cdot N \right|$ exponential law (base e = 2.1828..) $N(t) = N(t=0) \cdot e^{-\lambda \cdot t} \quad life \ time \ \tau = \frac{1}{\lambda}$ exponential law (base 10) $N(t) = N(t=0) \cdot 10^{-\frac{\lambda}{2.303} \cdot t}$ exponential law (base 2) $N(t) = N(t=0) \cdot 2^{-\frac{\lambda}{0.6931} \cdot t}$

Half life
$$t_{1/2} = \frac{0.6931}{\lambda}$$

Decay width
$$\Gamma \coloneqq \frac{\hbar}{\tau} = \hbar \cdot \lambda$$

Genetically independent species:

Sample with 2 components $(N_1, N_2) \rightarrow$ same type of radiation (γ -rays)

$$\begin{aligned} A_i(t) &= A_i(0) \cdot e^{-\lambda_i \cdot t} \quad (i = 1, 2) \\ \text{Total activity} : \\ A(t) &= A_1(0) \cdot e^{-\lambda_1 \cdot t} + A_2(0) \cdot e^{-\lambda_2 \cdot t} \end{aligned}$$

Decompose total decay curve $\rightarrow \lambda_1, \lambda_2$.

Simultaneous fit or deduce constant λ_2 for "shallow" decay first

W. Udo Schröder, 2007

Branching Decay

Genetically dependent species: Sample depopulated by 2 decay paths (λ_1, λ_2)

$$\lambda = \lambda_{1} + \lambda_{2}$$

$$\Gamma = \Gamma_{1} + \Gamma_{2} \quad "level width"$$

$$\frac{dN(t)}{dt} = -\lambda \cdot N(t) = -(\lambda_{1} + \lambda_{2}) \cdot N(t)$$

$$N(t) = N(0) \cdot e^{-\lambda \cdot t} = N(0) \cdot e^{-(\lambda_{1} + \lambda_{2}) \cdot t}$$

 $A(t) = \lambda \cdot N(t) = \lambda \cdot N(0) \cdot e^{-\lambda \cdot t} = A_1(t) + A_2(t)$ Partial activities :

$$\rightarrow A_i(t) = \lambda_i \cdot N(0) \cdot e^{-\lambda \cdot t} \quad (i = 1, 2)$$

Partial decay rates/half lives:

$$\frac{A_i(t)}{A(t)} = \frac{\lambda_i \cdot N(t)}{\lambda \cdot N(t)} = \frac{\lambda_i}{\lambda} \left| \left(t_{1/2} \right)_i \right| = \frac{0.693}{\lambda_i}$$

Identify radiation type *i* to measure partial decay rates/half lives.

00

W. Udo Schröder, 2007

Branching in EC β Decay

v phase space depends on $Q = E_{max} \rightarrow$ rate λ increases with E_{max}

$$P_{if} = G_F^2 \frac{2 \cdot Z^3}{\pi^2 \hbar^4 C^3 a_B^3} E_v^2 \quad E_v = E_{max} = Q$$
$$\lambda (E_{max}) \propto E_{max}^2$$

$$\frac{\lambda_{ex} \left(0.478 \, \text{MeV}\right)}{\lambda_{gs}} = \frac{\left(Q - 0.478 \, \text{MeV}\right)^2}{Q^2}$$
$$\frac{\lambda_{ex}}{\lambda_{gs}} = \left(\frac{0.382}{0.861}\right)^2 = 0.20$$

Experimental value correct order of magnitude but disagrees quantitatively

$$\left(\frac{\lambda_{ex}}{\lambda_{gs}}\right)_{exp} = 0.115$$

Reason: $\psi_n \neq \psi_p$ because of nuclear spin change $3^-/2 \rightarrow 1^-/2$ weaker magnetic transition

W. Udo Schröder, 2009

Nuclear Beta Decay

Competition production/decay for a species with N(t) members, Example of genetically related decay chain.

10

Irradiation of sample produces unstable species *N*.

Constant rate of production P=const. Constant decay rate λ

Generation inefficient for $t \gtrsim 3 \tau$

W. Udo Schröder, 2007

Genetically Related Decay Chain

$$\frac{dN_{i}(t)}{dt} = \lambda_{i-1}N_{i-1}(t) - \lambda_{i}N_{i}(t)$$

Gain and loss for *i-th* daughter

Coupled DEq. For populations N_i of nuclei in chain $N_1(t) = c_{11} \cdot e^{-\lambda_1 \cdot t}$ P(parent) $N_2(t) = c_{21} \cdot e^{-\lambda_1 \cdot t} + c_{22} \cdot e^{-\lambda_2 \cdot t} P(1.daughter)$: $N_k(t) = \sum_{m=1}^k c_{km} \cdot e^{-\lambda_m \cdot t} P((k-1).daughter)$ k + 1: final grand daughter

$$k = 1: \quad N_1(t) = N_1(0) \cdot e^{-\lambda_1 \cdot t}$$
$$N_2(t) = N_1(0) \frac{\lambda_1}{\lambda_2 - \lambda_1} \cdot \left(e^{-\lambda_1 \cdot t} - e^{-\lambda_2 \cdot t}\right)$$

Check by differentiation

11

Boundary condition $N_i(0) = c_{i1} + c_{i2} + \dots + c_{ii}$ \rightarrow determines c_{ii} Recursion Relations $C_{ij} = C_{i-1,j} \cdot \frac{\lambda_{i-1}}{\lambda_i - \lambda_j}$

Activities and Equilibrium in Decay Chains

$$k = 2: \quad N_1(t) = N_1(0) \cdot e^{-\lambda_1 \cdot t}$$
$$N_2(t) = N_1(0) \frac{\lambda_1}{\lambda_2 - \lambda_1} \cdot \left(e^{-\lambda_1 \cdot t} - e^{-\lambda_2 \cdot t}\right)$$
$$N_3(t) = N_1(0) \left\{ 1 + \frac{\lambda_1}{\lambda_2 - \lambda_1} e^{-\lambda_2 \cdot t} - \frac{\lambda_2}{\lambda_2 - \lambda_1} e^{-\lambda_1 \cdot t} \right\}$$

$$A_{1}(t) = \lambda_{1}N_{1}(t) = A_{1}(0) \cdot e^{-\lambda_{1} \cdot t} = -\frac{dN_{1}}{dt}$$

$$A_{2}(t) = \lambda_{2}N_{2}(t) = A_{1}(0)\frac{\lambda_{2}}{\lambda_{2} - \lambda_{1}} \cdot \left(e^{-\lambda_{1} \cdot t} - e^{-\lambda_{2} \cdot t}\right)$$

$$A_{2}(t) \neq -\frac{dN_{2}}{dt} \qquad A_{3}(t) = 0 \quad (\lambda_{3} = \infty)$$

$$\frac{A_{2}(t)}{A_{1}(t)} = \frac{\lambda_{2}}{\lambda_{2} - \lambda_{1}} \cdot \left(1 - e^{-(\lambda_{2} - \lambda_{1}) \cdot t}\right) \xrightarrow{t \to \infty} \left(\frac{\lambda_{2}}{\lambda_{2} - \lambda_{1}}\right)$$

Transitory/secular Equilibrium $A_1(t_{eq}) = A_2(t_{eq}) \rightarrow t_{eq} = \frac{\ell n (\lambda_1 / \lambda_2)}{(\lambda_1 - \lambda_2)}$

²⁰⁰Pb: $t_{1/2}=21h \rightarrow 200$ TI: $t_{1/2}=26h \rightarrow 200$ Hg $\lambda_1 = 0.693/21h = 9.17 \cdot 10^{-6} s^{-1} > \lambda_2$ $\lambda_2 = 0.693/26.4h = 7.29 \cdot 10^{-6} s^{-1}$ $t_{eq} = \frac{0.229}{1.88 \cdot 10^{-6} s^{-1}} = 1.22 \cdot 10^5 s = 1.41d$

W. Udo Schröder, 2007

12

Nuclear Decay

Secular Equilibrium in a Decay Chain

$$\frac{dN_{i}(t)}{dt} = \lambda_{i-1}N_{i-1}(t) - \lambda_{i}N_{i}(t)$$

Gain and loss for *i-th* daughter

Population N_i of daughter *i* in chain

$$N_{i}(t) = c_{1} \cdot e^{-\lambda_{1} \cdot t} + c_{2} \cdot e^{-\lambda_{2} \cdot t} + \dots + c_{i} \cdot e^{-\lambda_{i} \cdot t}$$
$$c_{1} = \frac{\lambda_{1} \cdot \lambda_{2} \cdot \dots \cdot \lambda_{i-1}}{(\lambda_{2} - \lambda_{1}) \cdot \dots \cdot (\lambda_{i} - \lambda_{1})} N_{1}(0), \quad c_{2} = \dots$$

Chain survives for long time, if $\lambda_1 \ll \lambda_i$, for all i > 2. Only term $\sim e^{-\lambda_1 \cdot t}$ survives. $N_i(t) \approx c_1 \cdot e^{-\lambda_1 \cdot t}$ with $c_1 = \frac{\lambda_1 \cdot \lambda_2 \cdots \lambda_{i-1}}{(\lambda_2 - \lambda_1) \cdots (\lambda_i - \lambda_1)} N_1(0)$

$$\frac{A_{i}(t)}{A_{i}(t)} = \frac{\lambda_{2}}{\underbrace{\left(\lambda_{2} - \lambda_{1}\right)}_{\approx \lambda_{2}}} \cdots \underbrace{\frac{\lambda_{i}}{\left(\lambda_{i} - \lambda_{1}\right)}}_{\approx \lambda_{i}} \rightarrow \underbrace{\frac{A_{i}(t)}{A_{i}(t)} = \prod_{j=2}^{i} \frac{\lambda_{j}}{\left(\lambda_{j} - \lambda_{1}\right)} \approx 1}_{j=2} \underbrace{\frac{A_{j}(t)}{\left(\lambda_{j} - \lambda_{1}\right)}}_{\in \lambda_{j}} \approx 1$$

 $\lambda_1 N_2(t) \approx \lambda_2 N_2(t) \approx \dots \approx \lambda_i N_i(t)$

13

Example: Determination of ²³⁸U Lifetime

Extremely long lifetime of ^{238}U \rightarrow direct measurement difficult

One of the decay products is

²²⁶Ra with $t_{1/2} = 1620 a$

Relative abundance $N_U/N_{Ra} = 2.8 \cdot 10^6$

Secular Equilibrium

 $\lambda_1 N_2(t) \approx \lambda_2 N_2(t) \approx \ldots \approx \lambda_i N_i(t) \rightarrow \lambda_0 N_0(now) \approx \lambda_{Ra} N_{Ra}(now)$

$$\lambda_{U} \approx \frac{N_{Ra}(now)}{N_{U}(now)} \lambda_{Ra} \rightarrow \tau_{U} \approx \frac{N_{U}(now)}{N_{Ra}(now)} \tau_{Ra} \qquad t_{1/2}(U) \approx \frac{N_{U}(now)}{N_{Ra}(now)} t_{1/2}(Ra)$$

$$t_{_{1\!/_2}}\left({}^{_{238}}U
ight)pprox 2.8\cdot 10^6\cdot 1620\,a=4.5\cdot 10^9 a$$

14

Recoil Distance Doppler Shift Method

Mean Lifetime Determination of the ¹⁰⁶Cd $I^{\pi} = 2^{+}_{1}$ state,

Figure 4.36: Left Hand Side Spectra: Stopped and forward-shifted components of the 633 keV, $I^{\pi} = 2_1^+ \rightarrow 0_1^+$, transition. Right Hand Side Spectra: Stopped and backward-shifted components of the 633 keV, $I^{\pi} = 2_1^+ \rightarrow 0_1^+$, transition. Top Row Spectra: Projections taken at a target-stopper distance of 13.2 μ m. Bottom Row Spectra: Projections taken at a target-stopper distance of 22.5 μ m. All projections have been generated from a gate on the backward-shifted component of the 861 keV, $I^{\pi} = 4_1^+ \rightarrow 2_1^+$, transition.

Crystal Blocking Technique

Principle of the crystal blocking technique.

Heavy ions bombard a single-crystal target, form CN. CN fissions with lifetime $\sim 10^{-18}$ s. FF emitted in the plane of the target atoms (ψ =0) are blocked from reaching the detector. FF emitted from recoiling nuclei that survive long enough to move into a channel between the crystal planes (distance d) are detected with little energy loss.

Thermal vibrations in the crystal determine the lower time limit for blocking.

²³⁸U+Ge @ E/A= 6.09 MeV

Blocking dip observed for Z=124, FF 67< Z_{FF} <85.

The width of the dip depends on atomic number and kinetic energy of the fission fragment

M. Morjean et al., Phys. Rev. Lett. 101, 072701 (2008)

Applications of Nuclear Instruments and Methods

17

Halflives of Radio-Isotopes for Dating

Applications

18

 α, β, β^- : particles measured to identify fractional abundance of radioactive isotope, *K: K* electron capture *R :* measure series of several decay products

Rb/Sr Dating of Rocks/Age of the Earth

Age of the Earth

Age of Earth = $4.5 \cdot 10^9 a$ Moon has similar age

Whole-rock rubidium-strontium isochron for a set of samples of a Precambrian granite body exposed near Sudbury, Ontario.

Terrestrial volcanic activity dated: produces younger rocks

Calibration of ¹⁴C Dating Methods

t-dependent flux of cosmic rays (solar cycles) → t-dependent ¹⁴C production and intake Calibration:

¹⁴C-analyze yearly rings in trees of different ages (number and widths of rings), connect to fossils

Errors in very old samples lead to underestimation of age (few hundred years).

Carbon Dating of Organic Objects


```
\lambda = \frac{0.6931}{t_{1/2}} = \frac{0.6931}{5730a} = 1.21 \times 10^{-4} a^{-1}
 N_{12C}(t) = N_{12C}(t=0)
                                                                                                                                                                                                                              t = 0 :
  N_{14C}(t) = N_{14C}(t=0) \cdot e^{-\lambda \cdot t}
                                                                                                                                                                                                                                time of death
                                                                                                                                                                                                                                No further
R(t) = \frac{N_{14C}(t)}{N_{12C}(t)} = \underbrace{R(t=0)}_{\sim 1/3 \cdot 10^{-12}} \cdot e^{-\lambda \cdot t}
                                                                                                                                                                                                                              <sup>14</sup>C intake
 \rightarrow \left\| age'' = t = \frac{1}{\lambda} \ln \left\| \frac{R(0)}{R(t)} \right\|
                                                                                                                                                                                                                                                     Measure
                                                                                                                                                                                                                                        <sup>14</sup>C/<sup>12</sup>C ratio
                                                                                                                                                                                                                                   of sample at t
                              Conventional method: \beta
                                                                                       50 Counting
                            100%
                                                                                                                                                                                                                12.5%
                     appression and the second s
                                                                                                                                the state is a state of the sta
                                                                                                                                   Age 11,460 yr
                                                                                                                                                                                               Age 17,190 yr
                        Age 0
                                                                         Age 5730 yr
                                           Direct <sup>14</sup>C counting method:
    Accelerator Mass Spectroscopy \rightarrow R \gtrsim
                                                                                                 10<sup>-16</sup> (10<sup>5</sup>a)
```

22

Applications

W. Udo Schröder, 2007