

ANSEL Experiment MB Gas Proportional Counter (PC)

Experimental Tasks

Set up the detector, electronics and data acquisition, a procedure similar to that followed in previous experiments with other detectors. This detector is a gas (Kr) amplification (proportional) counter that is used in the Mössbauer experiment. Note the complex detector response to photons.

- 1. **Slowly** power up the PC (+1800V as noted on detector), as well as the NIM electronics.
- 2. Place a 133 Ba, a 57 Co, and a 60 Co γ /X-ray source close to the detector or into the holder between detector and velocity drive.
- 3. On the scope, follow the analog pulse along the slow circuit (from Tennelec preamp to ORTEC 572 main amp). Record the signal shapes in the log book. Draw a block di-agram of the electronics.
- 4. Select a long enough integration/differentiation time for the main amp.
- 5. On the scope, inspect the output signals of the main amp. If necessary, adjust BLR and pole-zero.
- 6. Set up a NIM trigger signal for the data acquisition (DAQ) and check proper relative timing on the scope. Use a *very low threshold* on the TSCA discriminator.
- For the ¹³³Ba calibration source, check the provided tables and schemes for expected intense X-ray line(s). Attempt to discover them on the scope screen. Change the main amp gain to cover approximately the DDC-8 (0 - 2) Volt range. (Use this gain for a first exploratory spectrum measurement.)
- 8. Feed the analog signal to analog input (Ch_0) of the DAQ. Feed the NIM signal to the trigger input (NIM_IN_0) of the DAQ.
- 9. Start the DAQ according to the DDC-8 quick setup checklist.
- 10. Determine the "zero bin" of the DDC-8 amplitude scale by disconnecting the analog input temporarily.
- 11. Accumulate, display and save a γ/X ray energy spectrum in histogram form.
- 12. Adjust the main amplifier gain controls such that an estimated photon energy of E = (30-50) keV corresponds to approximately the middle of the DDC-8 full scale.
- 13. Perform a measurement with the 57 Co source, which should give rise to the 14.4-keV y-ray from the daughter 57 Fe.

Next, perform a series of measurements of the X-ray spectra for ¹³³Ba and ⁵⁷Co sources with several thin absorbers between source and detector. These measurements will ascertain, or modify, tentative energy assignments made in the preceding measurements. For the following measurements, keep accurate record of the running time.

- 14. With the gain settings determined in the previous measurements, accumulate a ¹³³Ba X-ray "Master" spectrum with good statistics. Record accurately the running time of this measurement.
- 15. With an external ORTEC counter/scaler measure the mean number of counts/s during the previous Master and each of the following data taking runs.
- 16. Perform a measurement with a thick Pb absorber from the absorber set, in order to determine the counter background.
- 17. From the absorber set choose two thin absorbers for which a substantial absorption can be expected for the low-energy γ- and X rays.
 Base your absorber choice on the expected transmission deduced from the provided catalog of transmission coefficients for various materials. Include Al and Pb absorbers.
- 18. (Optional) Normalize a precision pulser to a tentatively identified γ or X-ray line, e.g., the 14.4-keV line associated with the ⁵⁷Co source (see provided level scheme).

Report/Data Analysis (part of report on MB effect)

- 1. Discuss *briefly* the functionality of the counter. For example, explain what advantages Kr offers as a counter gas, as opposed to the more commonly used Ar or organic vapors? What is the purpose of the detector Be entrance window?
- 2. Identify in the measured spectra for the ¹³³Ba and ⁵⁷Co sources the prominent spectral features and correlate their channel positions (ch#) with the known energies. In the data analyses keep **track of experimental errors**.
- 3. Generate a calibration table of the positively identified prominent spectral features from these sources, i.e., list energy $(E_x \text{ or } E_\gamma)$ vs. experimental channel number (ch#) for these features.
- 4. Perform a least-squares fit for the calibration data E (ch#) and include the best-fit line in calibration table and plot. Keep track of uncertainties.
- 5. Compare the above calibration with that corresponding to the pulser linearity test.
- 6. Explain the different attenuations of spectral lines obtained with absorbers placed between source and detector. Identify the origin of the dominant low-energy structure in the spectrum.
- 7. From the count rates measured with the counter/scaler, argue for which, if any, of the runs with absorbers dead time effects need to be considered. Obtain from the TA the fixed DDC-8 dead/busy time per event, which is the dominant component.

Reading Assignments: Knoll, Ch 6 I-IV; Ch 4 VIIA-C; Tables of X-ray energies.

ROCHESTER

Datactor window: berillium 23mg/cm²

Element	Κ α 1	К <i>а</i> 2	К β 1	L a l	L q 2	L β 1	L β 2	Lγi	Μ α 1
22 Ti	4,510.84	4,504.86	4,931.81	452.2	452.2	458.4			
23 V	4,952.20	4,944.64	5,427.29	511.3	511.3	519.2			
24 Cr	5,414.72	5,405.509	5,946.71	572.8	572.8	582.8			
25 Mn	5,898.75	5,887.65	6,490.45	637.4	637.4	648.8			
26 Fe	6,403.84	6,390.84	7,057.98	705.0	705.0	718.5			
27 Co	6,930.32	6,915.30	7,649.43	776.2	776.2	791.4			
28 Ni	7,478.15	7,460.89	8,264.66	851.5	851.5	868.8			
29 Cu	8,047.78	8,027.83	8,905.29	929.7	929.7	949.8			
30 Zn	8,638.86	8,615.78	9,572.0	1,011.7	1,011.7	1,034.7			
31 Ga	9,251.74	9,224.82	10,264.2	1,097.92	1,097.92	1,124.8			
32 Ge	9,886.42	9,855.32	10,982.1	1,188.00	1,188.00	1,218.5			
33 As	10,543.72	10,507.99	11,726.2	1,282.0	1,282.0	1,317.0			
34 Se	11,222.4	11,181.4	12,495.9	1,379.10	1,379.10	1,419.23			
35 Br	11,924.2	11,877.6	13,291.4	1,480.43	1,480.43	1,525.90			
36 Kr	12,649	12,598	14,112	1,586.0	1,586.0	1,636.6			
37 Rb	13,395.3	13,335.8	14,961.3	1,694.13	1,692.56	1,752.17			
38 Sr	14,165	14,097.9	15,835.7	1,806.56	1,804.74	1,871.72			
39 Y	14,958.4	14,882.9	16,737.8	1,922.56	1,920.47	1,995.84			
40 Zr	15,775.1	15,690.9	17,667.8	2,042.36	2,039.9	2,124.4	2,219.4	2,302.7	

Energies in keV of X-ray emission lines (https://xdb.lbl.gov/Section1/Table_1-2.pdf.

ROCHESTER

¹³³56Ba

¹³³₅₆ Ba 77

1 Decay Scheme

Ba-133 disintegrates by electron capture to Cs-133 via the excited states of 437 keV and of 383 keV .

Le baryum 133 se désintègre par capture électronique vers des niveaux excités de 437 et 383 keV du césium 133.

2 Nuclear Data

 $T_{1/2}(^{133}\text{Ba})$: 10,540 (6) a $Q^+(^{133}\text{Ba})$: 517,4 (10) keV

2.1 Electron Capture Transitions

	Energy keV	Probability × 100	Nature	lg ft	P_{K}	P _L	P _M
€0,4 €0,3 €0,2 €0,1 €0,0	80,4 (10) 133,6 (10) 356,8 (10) 436,4 (10) 517,4 (10)	86,2 (5) 13,7 (4) < 0,3 < 0,7 < 0,0005	Allowed Allowed 2nd Forbidden 2nd Forbidden Uniq. 2ndForbidden	6,68 8,07 > 10,6 > 10,6 > 13,9	0,672 (5) 0,7734 (21) 0,79 (3) 0,88 (4)	0,252 (4) 0,1761 (15)	0,0612 (13) 0,0408 (8)

2.2 Gamma	Transitions	and Internal	Conversion	Coefficients
-----------	-------------	--------------	------------	--------------

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	αĸ	αL	αμνο	<i>α</i> Ţ·
$\gamma_{4,3}(Cs) \\ \gamma_{2,1}(Cs) \\ \gamma_{1,0}(Cs) \\ \gamma_{2,0}(Cs) \end{cases}$	53,1622 (6)	15,0 (4)	M1+2,2(13)%E2	4,93 (10)	0,86 (3)	0,226 (8)	6,02 (18)
	79,6142 (12)	7,34 (17)	M1+0,09(9)%E2	1,515 (30)	0,204 (5)	0,0530 (11)	1,77 (4)
	80,9979 (11)	90,1 (16)	M1+2,23(4)%E2	1,46 (3)	0,220 (5)	0,0570 (14)	1,74 (4)
	160,6121 (16)	0,84 (3)	M1+62(12)%E2	0,24 (3)	0,054 (7)	0,014 (3)	0,31 (4)

1

KRI /V. P. Chechev, N. K. Kuzmenko

29/10/02 - 10/6/2004

ANSEL Exp. Mössbauer Spectroscopy

BNM - LNHB/CEA - Table de Radionucléides

¹³³₅₆ Ba ₇₇

	Energy keV	P _{7+ce} x 100	Multipolarity	αĸ	αL	αμνο	QΤ
$\gamma_{3.2}(Cs)$	223,2370 (13)	0,498 (6)	M1+1,3(2)%E2	0,0853 (20)	0,0113 (3)	0,00292 (6)	0,0995 (30
Y4.2(Cs)	276,3992 (12)	7,57 (5)	E2	0,0461 (9)	0,00855 (17)	0,00225 (5)	0,0569 (12
73.1(Cs)	302,8512 (5)	19,15 (14)	M1+0,05(6)%E2	0,0381 (8)	0,00496 (10)	0,00128 (3)	0,0443 (9)
Y4,1(Cs)	356,0134 (7)	63,64 (20)	E2	0,0211 (4)	0,00351 (7)	0,00092 (30)	0,0256 (5)
y3.0(Cs)	383,8491 (12)	9,12 (6)	E2	0,0169(3)	0,00273 (5)	0,00071(2)	0,0203 (4)

10

3 Atomic Data

3.1 Cs

ωĸ		0,894	(4)
$\bar{\omega}_L$:	0,104	(5)
T.KL		0,895	(4)

3.1.1 X Radiations

		Energy keV		Relative probability
Хк		E.		
10	Ka2	30,625		54,13
	Kαı	30,973		100
	Kβ ₃	34,92	}	
	Κβι	34,987	}	
	$K\beta_5''$	35,245	}	29
	$K\beta'_5$	35,259	}	
	K_{β_2}	35,818	}	
	$K\beta_4$	35,907	}	7,33
	$\mathrm{KO}_{2,3}$	35,972	}	
XL				
	Ll	3,8		
	Lov	- 5.7		

3.1.2 Auger Electrons

	Energy keV	Relative probability	
Auger K			
KLL	24,41 = 25,80	100	
KLX	29,00 30,96	47,2	
КXҮ	33,51 - 35,95	5,56	
Auger L	2,5 - 5,6		

KRI /V. P. Chechev, N. K. Kuzmenko

2

100 B

¹³³₅₆ Ba ₇₇

4 Electron Emissions

		Energy keV	Electrons per 100 disint.
e _{AL}	(Cs)	2,5 - 5,6	138,0 (15)
^е ак	(Cs) KLL KLX KXY	24,41 - 25,80 29,00 - 30,96 33,51 - 35,95	14,2 (6) } }
eC4,3 K eC2,1 K eC1,0 K eC4,3 L eC4,3 JNNO eC2,1 L eC1,0 L eC2,1 MNO eC2,0 MNO eC2,0 K eC4,2 K eC4,2 K eC4,2 L eC3,1 L eC3,1 L eC4,1 K	(Cs) (Cs) (Cs) (Cs) (Cs) (Cs) (Cs) (Cs)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$10,6 (3) \\ 4,01 (9) \\ 48,1 (11) \\ 1,84 (7) \\ 0,484 (18) \\ 0,541 (17) \\ 7,25 (18) \\ 0,140 (5) \\ 1,88 (5) \\ 0,15 (2) \\ 0,330 (7) \\ 0,70 (2) \\ 0,0612 (13) \\ 0,091 (2) \\ 1,31 (3) \\ 0,011 ($
eC _{3,0} K eC _{4,1} L eC _{4,1} MNO	(Cs) (Cs) (Cs)	347,8039 (12) 350,30 - $351,01354,80$ - $355,93$	$0,151 (3) \\ 0,218 (4) \\ 0,57 (1)$

11

5 Photon Emissions

5.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(Cs)	3,8 — 5,7		16,0 (8)	
XKa₂ XKa₁	(Cs) (Cs)	30,625 30,973		34,0 (4) 62,8 (7)	} Κα }
ΧΚβ ₃ ΧΚβ1 ΧΚβ5	(Cs) (Cs) (Cs)	34,92 34,987 35,245	} } }	18,2 (2)	К' <i>в</i> 1
ΧΚβ ₅	(Cs)	35,259	}		

KRI /V. P. Chechev, N. K. Kuzmenko

¹³³₅₆ Ba 77

		Energy keV		Photons per 100 disi	nt.
ХК <i>В</i> 2 ХК <i>В</i> 4 ХКО2,3	(Cs) (Cs) (Cs)	35,818 35,907 35,972	} } }	4,6 (1)	$K' \beta_2$

12

5.2 Gamma Emissions

	Energy keV	Photons per 100 disint.
γ _{4,3} (Cs)	53,1622 (6)	2,14 (3)
$\gamma_{2,1}(Cs)$	79,6142 (12)	2,65 (5)
$\gamma_{1,0}(Cs)$	80,9979 (11)	32,9 (3)
$\gamma_{2,0}(Cs)$	160,6121 (16)	0,638 (4)
$\gamma_{3,2}(Cs)$	223,2368 (13)	0,453 (3)
$\gamma_{4,2}(Cs)$	276,3989 (12)	7,16 (5)
$\gamma_{3,1}(Cs)$	302,8508(5)	18,34 (13)
$\gamma_{4,1}(Cs)$	356,0129 (7)	62,05 (19)
$\gamma_{3,0}(Cs)$	383,8485 (12)	8,94 (6)

6 Main Production Modes

 $\sigma = 1.32(n,\gamma)Ba - 1.33m$ $\sigma = 0.5$ barns Possible impurities = Ba - 1.31, Ba - 1.40

Cs - 133(p,n)Ba - 133Possible impurities : Cs - 132

7 References

- Ε. Ι. WYATT, S. A. REYNOLDS, T. H. HANDLEY, W. S. LYON, H. A. PARKER. Nucl. Sci. Eng. 11 (1961) 74 (Half-life)
- P. BLASI, M. BOCCIOLINI, P. R. MAURENZIG, P. SONA, N. TACCETTI. NUOVO Cim. 50B (1967) 298
- (Gamma-ray emission intensities) - J. A. BEARDEN. Rev. Mod. Phys. 39 (1967) 78
- (X-ray energies)
- F. LAGOUTINE, Y. LE.GALLIC, J. LEGRAND. Int. J. Appl. Radiat. Isotop. 19 (1968) 475
- (Half-life)
- A. NOTEA, Y. GURFINKEL, Nucl. Phys. A107 (1968) 193 (Gamma-ray emission intensities)

(------

KRI /V. P. Chechev, N. K. Kuzmenko

4

A CONTRACTOR OF

⁵⁷₂₇ Co ₃₀

17

1 Decay Scheme

Co-57 disintegrates by 100% electron capture to the excited levels of 706.42 keV (0.18%), and 136.47 keV (99.82%) in Fe-57. Le cobalt 57 se désintègre à 100 % par capture électronique principalement vers les niveaux excités de 706 et 136 keV du fer 57.

2 Nuclear Data

 $T_{1/2}({}^{57}Co)$: 271,80 (5) d $Q^+({}^{57}Co)$: 836,0 (4) keV

2.1 Electron Capture Transitions

	Energy keV	Probability × 100	Nature	lg ∫t	P_{K}	P _l ,	P_M
€0,4	129,6(4)	0,183 (7)	Allowed	7,69	0,8789 (17)	0,1035 (14)	0,0168 (6)
€0,3 €0,2 €0,1	699,5(4) 821.6(4)	99,82 (20) < 0,003	Allowed 2nd forbidden	6,45 > 11,1	0,8875 (16)	0,0963 (13)	0,0154 (5)
€0,0	836,0 (4)	< 0,00035	2nd forbidden unique	> 12,9			

2.2 Gamma Transitions and Internal Conversion Coefficients

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	αĸ	α_L	α _M (10 ³)	αT
$\gamma_{1,0}(Fe)$	14,41295 (31)	87,69 (7)	M1+0,0005%E2	7,69 (16)	0,782 (16)	113 (3)	8,58 (18)
$\gamma_{2,1}(Fe)$	122,06079 (12)	87,53 (8)	M1+1,4%E2	0,0212 (5)	0,00208 (5)	0,303 (7)	0,0236 (5)
$\gamma_{2,0}(Fe)$	136,47374 (29)	12,30 (18)	E2	0,133 (3)	0,0136 (3)	1,96 (4)	0,148 (3)
$\gamma_{3,2}(Fe)$	230,27 (3)	0,0004 (4)	M1+0,04%E2	0,00374 (8)	0,000356 (8)	0,0524 (11)	0,00415 (9)

KRI /V. P. Chechev, N. K. Kuzmenko

J.

ANSEL Exp. Mössbauer Spectroscopy

BNM - LNHB/CEA - Table de Radionucléides

⁶⁷₂₇ Co ₃₀

	Energy keV	Р _{ү+се} × 100	Multipolarity	αĸ	α _L	α <u>м</u> (10 ⁻³)	۵Ţ
$\begin{array}{c} \gamma_{4,3}(Fe) \\ \gamma_{3,1}(Fe) \\ \gamma_{3,0}(Fe) \\ \gamma_{4,2}(Fe) \\ \gamma_{4,1}(Fe) \\ \gamma_{4,0}(Fe) \end{array}$	$\begin{array}{c} 339,67 \ (3) \\ 352,34 \ (2) \\ 366,74 \ (3) \\ 569,94 \ (4) \\ 692,01 \ (2) \\ 706,42 \ (2) \end{array}$	$\begin{array}{c} 0,0039 \ (4) \\ 0,0032 \ (4) \\ 0,0013 \ (4) \\ 0,015 \ (2) \\ 0,159 \ (6) \\ 0,0050 \ (5) \end{array}$	M1+0,7%E2 M1+0,06%E2 M1+17%E2 M1+0,94%E2 M1+17,8%E2 (E2)	0,00149 (3) 0,00135 (3) 0,00160 (5) 0,000458 (10) 0,000328 (10)	0,000142 (3) 0,000129 (3) 0,000153 (5) 0,0000434 (9) 0,000031 (1)	0,0208 (5) 0,0188 (4) 0,0223 (7) 0,00631 (14) 0,00452 (14)	0,00165 (4) 0,00150 (3) 0,00178 (6) 0,000508 (12) 0,000364 (12)

2

3 Atomic Data

3.1 Fe

ω_K	5	0,352	(4)
üL	:	0,0061	(5)
n_{KL}	4	1,456	(12)

3.1.1 X Radiations

		Energy keV		Relative probability
Хĸ				
	$K\alpha_2$	6,39084		50,7
	Kαı	6,40384		100
	К/Эз	7,05798)	
	$\mathrm{K}eta_5''$	7,1081	}	21,4 -
X _L				
-	Ll	0,61		
	LB	- 0.79		

3.1.2 Auger Electrons

	Energy keV	Relative probability
Auger K		
KLL	5,37 - 5,64	100
KLX	6,16 - 6,40	23,9
KXY	6,91 - 7,10	2,2
Auger L	0,6 - 0,7	302

KRI /V. P. Chechev, N. K. Kuzmenko

18

BNM - LNHB/CEA - Table de Radionucléides

4 Electron Emissions

		Energy keV	Electrons per 100 disint.	
e _{AL}	(Fe)	0,6 - 0,7	252 (3)	
eak	(Fe) KLL KL X KXY	5,37 - $5,646,16$ - $6,406,91$ - $7,10$	105,2 (13) } }	
eC1,0 K eC1,0 L eC1,0 M eC2,1 K eC2,1 L eC2,1 M eC2,0 K eC2,0 L eC2,0 M	(Fe) (Fe) (Fe) (Fe) (Fe) (Fe) (Fe) (Fe)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	70,4 (20) 7,16 (20) 1,03 (3) 1,81 (4) 0,178 (4) 0,0259 (6) 1,42 (4) 0,146 (4) 0,0210 (5)	

19

5 Photon Emissions

5.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(Fe)	0,61 — 0,79		1,55 (13)	
ΧΚα2 ΧΚα1	(Fe) (Fe)	6,39084 6,40384		16,8 (3) 33,2 (5)	} Κα }
$XK\beta_3$ $XK\beta_1$	(Fe) (Fe)	7,05798	} }	7,1 (2)	$K' \beta_1$
XKβ5 XKβ4	(Fe) (Fe)	7,1081	} }		$K' \beta_2$

5.2 Gamma Emissions

	Energy keV	Photons per 100 disint.
$\gamma_{1,0}(Fe)$	14,41295 (31)	9,15 (17)
$\gamma_{2,1}(Fe)$	122,06065 (12)	85,51 (6)
$\gamma_{2,0}(Fe)$	136,47356 (29)	10,71 (15)

KRI /V. P. Chechev, N. K. Kuzmenko

⁵⁷₂₇ Co ₃₀