

Basic Statistics

Reading Assignment : Knoll, Ch. 3; Bevington, Chs.1-3

Acceptable data analysis includes evaluation and discussion of uncertainties of parameters providing a "reduced" description of measured data.

Example: Sample mean (expectation) value, variance (standard deviation)

- Statistical (random) uncertainties \rightarrow Precision
- Systematic (instrument-inherent or analytical) → Accuracy biased detector response, bad resolution, poor analysis procedures (bad fit function, poor choice of fit range, wrong Bckg. function, ..)

 \sim

First ANSEL Data: Na-22 γ Spectrum

🌜 Igor Pro 6.34A

菖

<

Statistics

Analysis

Spectrum

 Ap •Mo

Edit Data Analysis Macros Windows Graph Misc Help

- 233

Make/N=1028/O 'Nal-Na22 Hist';DelayUpdate

Histogram/B=1 'Nal-Na22', 'Nal-Na22_Hist'; DelayUpdate

Display 'Nal-Na22_Hist'

ModifyGraph log(left)=1

Igor Pro 6.34A

D

Statistics

Analysis

Spectrum

: Edit Data Analysis Macros Windows Graph Misc Help

Ш

×

ModifyGraph Isize('fit Nal-Na22 Hist')=3

Signal-Plus-Background Spectrum

W. Udo Schröder, 2022

Useful when only a mean count rate is known: decay, background counts, or reaction.

```
<sup>137</sup>Cs = unstable isotope, decays with
t_{1/2} = 27 years \rightarrow p = \ln 2/27 = 0.026/a = 8.2 \cdot 10^{-10} s^{-1} \rightarrow small
```

Sample of 1 μ g: N = 10¹⁵ nuclei (=trials for decay) How many will decay?

 $\mu = N \cdot p = 8.2 \cdot 10^{+5} s^{-1}$

Count rate estimate dN/dt = $(8.2 \cdot 10^{+5} \pm 905) \text{ s}^{-1}$ The estimated Probability for m decays P (µ,m) =

$$P_{Poisson}(\mu, m) = \frac{\mu^m \cdot e^{-\mu}}{m!} = \frac{(8.52 \cdot 10^5)^m \cdot e^{-8.52 \cdot 10^5}}{m!}$$

 \sim

Poisson Probability Distribution

Limit of binomial distribution

$$Lim_{p\to 0,N\to\infty}P_{binomial}(N,m) = P_{Poisson}(\mu,m)$$

Probability for observing m events when average is <m> = μ

$$P_{Poisson}(\mu,m) = \frac{\mu^m \cdot e^{-\mu}}{m!}$$

For radioactive decays $[\Delta t^{-1}] \rightarrow p = \frac{A}{N}$ $p \ll 1 \rightarrow \sigma_m^2 \approx \langle m \rangle \# counts$

Observe N counts (events) \rightarrow \rightarrow statistical uncertainty is $\pm \sigma_N = \pm \sqrt{N}$

ω

Functions of Stochastic Variables

Random independent variables $N_1, N_2, ..., N_n$ corresponding variances $\sigma_1^2, \sigma_2^2, ..., \sigma_n^2$ Function $f(N_1, N_2, ..., N_n)$ of random variables: Uncertainty $\Delta N_i \rightarrow \Delta f(\{N_i\})$

Gauss' law of error propagation:

$$\sigma_{f} \approx \left\{ \left(\frac{\partial f}{\partial N_{1}} \right)^{2} \sigma_{1}^{2} + \left(\frac{\partial f}{\partial N_{2}} \right)^{2} \sigma_{2}^{2} + \dots + \left(\frac{\partial f}{\partial N_{n}} \right)^{2} \sigma_{n}^{2} \right\}^{1/2} \\ \left(\Delta f \mid_{N_{2},N_{3,\dots}} \right)^{2} + \left(\Delta f \mid_{N_{1},N_{3,\dots}} \right)^{2} + \dots + \left(\Delta f \mid_{N_{1},N_{2,\dots},N_{n-1}} \right)^{2} \right)^{2}$$

Further terms if N_i are not independent (\rightarrow correlations, covariance tensor) Otherwise, individual independent component variances $(\Delta f)^2$ add.

Experimental Mean Count Rate and Variance

What can be measured: ensemble (sampling) averages (expectation values) and uncertainties

n	n- <n></n>	(n- <n>)²</n>
36076	129.6	16796.16
35753	-193.4	37403.56
35907	-39.4	1552.36
36116	169.6	28764.16
35884	-62.4	3893.76
36136	189.6	35948.16
35741	-205.4	42189.16
35640	-306.4	93880.96
36124	177.6	31541.76
36087	140.6	19768.36
35946	-1.5E-12	3463.76
<n></n>	<n-<n>></n-<n>	σ ² n

Task: ²³⁶U (0.25mg) source, count # α particles emitted during N = 10 time intervals Δt (samples @ $\Delta t \approx 1$ min). $\lambda = ??$

Average count n in a sample of a population:

$$\langle n \rangle = \frac{1}{N} \cdot \sum_{i=1}^{N} n_i \quad (\neq \langle n \rangle_{population} unknown)$$

Variance of n in each of the M individual samples

$$s^{2} = \sigma^{2} = \frac{1}{N-1} \cdot \sum_{i=1}^{N} (n_{i} - \langle n \rangle)^{2} \quad \rightarrow (N = N_{m}, m = 1, ..., M)$$

Variance ("error") of the

sample average $\langle n \rangle \neq \langle n \rangle_{population}$

$$\sigma_n^2 = \frac{s^2}{M} = \frac{1}{M(N-1)} \cdot \sum_{i=1}^N (n_i - \langle n \rangle)^2$$

Std.deviation:
$$\sigma_n = \sqrt{\sigma_n^2} \approx \sqrt{\langle n \rangle} = 59$$

Result: $\langle n \rangle \approx \langle n \rangle_{pop} = (35946 \pm 59) \text{ min}^{-1}$

"Error" of <n> much smaller than σ^2 . It is reduced by 1/10 for 100 times larger sample

9

Sample Statistics (Simulation)

11

Example: Spectral Analysis (Local Bck Subtr.)

Add or subtract 2 Poisson-distributed numbers N_1 and N_2 :

Variances σ^2 always add

 $N := \left[N_1 \pm \sqrt{N_1} \right] \pm \left[N_2 \pm \sqrt{N_2} \right] \stackrel{\land}{=} \left(N_1 \pm N_2 \right) \pm \sqrt{N_1 + N_2}$ Std. dev $\sigma_1 \stackrel{\frown}{=} Std.$ dev $\sigma_2 \stackrel{\frown}{=} Std.$ dev σ_{1+2}

Stochastic Observables

2 sources of stochastic observables x in nuclear science:

- 1) Nuclear phenomena are governed by quantal wave functions and inherent statistics
- 2) Detection of process occurs with imperfect efficiency ($\epsilon < 1$) and finite resolution distributing sharp events x_0 over a range in x. Stochastic observables x have a range of values
 - with frequencies determined by (normalized) probability distribution P(x)

Characterize P by set of moments of P

 $<x^{n}> = \int x^{n} P(x) dx;$ n= 0, 1, 2,...

with the **normalization** $\langle x^0 \rangle = 1$. First moment of P:

 $E(x) = \langle x \rangle = \int x \cdot P(x) dx$

second central moment = "variance" of P(x): $\sigma_x^2 = \langle x^2 \rangle - \langle x \rangle^2$

13

Uncertainty and Statistics

Nucleus is a quantal system described by a wave function $\psi(x,...;t)$ (x,...;t) are the degrees of freedom of the system and time. **Probability** density dP(x,t)/dx (e.g., for x, integrate over others)

$$\frac{dP(x,t)}{dx} = |\psi(x,t)|^{2}$$
Normalization
$$P(\mathbf{x},t) = \int_{-\infty}^{+\infty} dx \frac{dP(x,t)}{dx} = \int_{-\infty}^{+\infty} dx |\psi(x,t)|^{2} = 1$$
Transition between states $1 \to 2$, $\Gamma \approx \frac{\hbar}{2\pi} |\langle M_{12} \rangle|^{2} \rho(E)$
1 is not a stationary state \to finite width $\Delta E \sim \Gamma$

$$\frac{dP_{1}(x,t)}{dx} = |\psi(x)|^{2} e^{-\frac{\Gamma}{\hbar}t} \propto e^{-\lambda t} \text{ state 1 disappears}$$
 $\lambda = 1/\tau \text{ mean lifetime } \tau$

For different nuclei or different states of one nucleus, the probability rate λ for disappearance (decay rate) can vary over many orders of magnitude \rightarrow no certainty for any single entity.

Normal Distribution of a Random Variable

Continuous function or discrete distribution (over bins Δx =const)

$$\Gamma_{FWHM} = 2\sigma_x \cdot \sqrt{2\ln 2} = 2.35 \cdot \sigma_x$$

$$\sigma_x \text{ is NOT} = \text{uncertainty of } \langle x \rangle !$$

Normalized (cumulative) probability

$$P(x < \mathbf{x}_{1}) = \frac{1}{\sqrt{2\pi\sigma_{X}^{2}}} \cdot \int_{-\infty}^{\mathbf{x}_{1}} dx \exp\left\{-\frac{\left(x - \langle x \rangle\right)^{2}}{2\sigma_{X}^{2}}\right\}$$

W. Udo Schröder,

Sample Statistics (Simulation)

16

Example 2

The larger the sample, the narrower the distribution of x values, the more it approaches the true Gaussian (normal) distribution. The means (averages) of different samples in the previous examples cluster together closely. \rightarrow general property of samples of stochastic variables:

The distribution of the **sample means** approaches a Gaussian normal distribution, if the size n of the sample increases, regardless of the form of the original (population) distribution.

The mean (average) of a distribution of stochastic data does not contain information on the actual shape of the distribution.

The average of any truly random sample of a population is already close to the true population average. Considering many samples, or large samples, narrows the choices. The Gaussian width becomes narrower for larger samples. \rightarrow The standard error of the mean decreases as the sample size increases.

Binomial Distribution

Integer random variable m = number of events, out of N possible. Example: decay of m (from a sample of N) radioactive nuclei, or detection of m (out of N) photons arriving at detector. Let

p = probability for a (one) success (decay of 1 nucleus, detection of 1 photon)

Choose an arbitrary sample of m trials out of N total trials (possibilities)

p^m = probability for at least m successes (observations) (1-p)^{N-m} = probability for N-m failures (survivals, not detected,...)

Probability for exactly m successes out of a total of N trials

$$P(m) \propto p^m \cdot (1-p)^{N-m}$$

How many ways can *m* events be 'chosen' out of $N ? \rightarrow$ Binomial coefficient

$$\binom{N}{m} = \frac{N!}{m!(N-m)!} = \frac{(N-m+1)\cdots N}{1\cdots m}$$

Total probability (expected success rate) for any sample of *m* identical events:

$$P_{binomial}(m) = \binom{N}{m} \cdot p^m \cdot (1-p)^{N-m}$$

Distribution Moments and Limits

$$P_{binomial}(N,m,p) = {N \choose m} p^m (1-p)^{N-m}$$

Probability for m "successes" out of N trials, individual probability p

Normalization

$$1 = \sum_{m=0}^{N} P_{bin}(m, p) = \sum_{m=0}^{N} {N \choose m} p^{m} (1-p)^{N-m}$$

Poisson Probability Distribution

Results from binomial distribution in the limit of small p and large N $(N \cdot p > 0)$

$$\lim_{\substack{p \to 0 \\ and N \to \infty}} P_{binomial}(N,m) = P_{Poisson}(\mu,m)$$

Probability for observing m events when average is <m> = μ

$$P_{Poisson}(\mu,m) = \frac{\mu^m \cdot e^{-\mu}}{m!}$$
 m=0,1,2,...

 $\mu = \langle \mathbf{m} \rangle = \mathbf{N} \cdot \mathbf{p}$ and $\sigma^2 = \mu$

is the mean, the average number of successes in N trials.

Observe N counts (events) \rightarrow \rightarrow uncertainty is $\sigma = \sqrt{\mu}$

Unlike the binomial distribution, the Poisson distribution does not depend explicitly on p or N!

For increasing p (<1.0):

Poisson \rightarrow Gaussian (Normal Distribution)

Moments of Transition Probabilities

$$N: 0.25mg = 0.25mg \cdot \frac{6.022 \cdot 10^{23}}{236g} = 6.38 \cdot 10^{17}$$

$$p = \frac{\langle n \rangle}{N} = \frac{3.5946 \cdot 10^4 \text{ min}^{-1}}{6.38 \cdot 10^{17}} = 5.6362 \cdot 10^{-14} \text{ min}^{-1}$$
Probability for decay (decay rate per nucleus):
$$p = \lambda = 5.6362 \cdot 10^{-14} \text{ min}^{-1}$$
corresponds to "half life" $t_{1/2} = 2.34 \cdot 10^7 a$

Small probability for process, but many trials ($n_0 = 6.38 \cdot 10^{17}$)

 $\rightarrow \rightarrow \rightarrow$ O< $n_0 \cdot \lambda < \infty$

Statistical process follows a Poisson distribution: n="random" Different statistical distributions: Binomial, Poisson, Gaussian Useful when only a mean count rate is known: decay, background counts, or reaction.

```
<sup>137</sup>Cs = unstable isotope, decays with
t_{1/2} = 27 years \rightarrow p = ln2/27 = 0.026/a = 8.2 · 10<sup>-10</sup>s<sup>-1</sup> \rightarrow small
```

Sample of 1 μ g: N = 10¹⁵ nuclei (=trials for decay) How many will decay?

 $\mu = N \cdot p = 8.2 \cdot 10^{+5} s^{-1}$

Count rate estimate dN/dt = $(8.2 \cdot 10^{+5} \pm 905) \text{ s}^{-1}$ The estimated Probability for m decays P (µ,m) =

$$P_{Poisson}(\mu,m) = \frac{\mu^m \cdot e^{-\mu}}{m!} = \frac{(8.52 \cdot 10^5)^m \cdot e^{-8.52 \cdot 10^5}}{m!}$$

Functions of Stochastic Variables

Random independent variables $N_1, N_2, ..., N_n$ corresponding variances $\sigma_1^2, \sigma_2^2, ..., \sigma_n^2$ Function $f(N_1, N_2, ..., N_n)$ of random variables: Uncertainty $\Delta N_i \rightarrow \Delta f(\{N_i\})$

Gauss' law of error propagation:

$$\sigma_{f} \approx \left\{ \left(\frac{\partial f}{\partial N_{1}} \right)^{2} \sigma_{1}^{2} + \left(\frac{\partial f}{\partial N_{2}} \right)^{2} \sigma_{2}^{2} + \dots + \left(\frac{\partial f}{\partial N_{n}} \right)^{2} \sigma_{n}^{2} \right\}^{1/2} \\ \left(\Delta f \mid_{N_{2},N_{3,\dots}} \right)^{2} + \left(\Delta f \mid_{N_{1},N_{3,\dots}} \right)^{2} + \dots + \left(\Delta f \mid_{N_{1},N_{2,\dots},N_{n-1}} \right)^{2} \right)^{2}$$

Further terms if N_i are not independent (\rightarrow correlations, covariance tensor) Otherwise, individual independent component variances (Δf)² add.

Confidence Level

 $CL(\delta = 1\sigma) = 68.3\%$ $CL(\delta = 2\sigma) = 95.4\%$ $CL(\delta = 3\sigma) = 99.7\%$

Assume normally distributed observable x:

$$P(x) = \frac{1}{\sqrt{2\pi v_{pop}^2}} \cdot \exp\left\{-\frac{\left(x - \langle x \rangle_{pop}\right)^2}{2v_{pop}^2}\right\}$$

Sample distribution with data set

→ observed average <x> and std. error σ approximate population. Confidence level CL (Central Confidence Interval):

$$P(|< x_{pop} > - < x > | < \delta) \approx$$

$$\approx \frac{2}{\sqrt{2\pi\sigma^2}} \cdot \int_{\langle x \rangle}^{\langle x \rangle + \delta} \exp\left\{-\frac{\left(x - \langle x \rangle\right)^2}{2\sigma^2}\right\} dx = CL$$

For very trustworthy exptl. results quote $\pm 3\sigma$ error bars!

Stochastic Data Fits to Theory

Example: Search for rare particle decay with small decay rate λ , observe counts within time Δt . Decay probability law (survival prob.) $dP/dt \propto exp \{-\lambda \cdot t\} \propto dP/d\lambda$. Law is symmetric in λ and $t : \rightarrow P(\lambda, t)$

Prob for no decay in $[0, \Delta t]$, particle has survived $\Delta P(0|\lambda) = \Delta t \cdot e^{-\lambda \cdot \Delta t} \cdot \Delta \lambda \quad with \int_{0}^{\infty} \Delta t \cdot e^{-\lambda \cdot \Delta t} d\lambda = 1$ Prob survived

Probability for survival during Δt at λ .

Spectrum Analysis Statistics

Example : no decays observed in ΔT

$$P(\lambda \le \lambda_0) = \int_{0}^{\lambda_0} \Delta T \cdot e^{-\lambda \cdot \Delta T} d\lambda = 1 - e^{-\lambda_0 \cdot \Delta T}$$
Prob for 1 decay
for $\lambda = \lambda_0$

$$\lambda_0 = \frac{-1}{\Delta T} \cdot \ln[1 - P(\lambda \le \lambda_0)] = \frac{-1}{\Delta T} \cdot \ln[1 - CL(\lambda_0)] \ge 0$$
Lower limit for
 $\lambda_0 = \text{upper limit}$

Lower limit for
$$\lambda_0$$
 = upper limit for λ

The higher the confidence level CL ($0 \le CL \le 1$), the larger the upper limit for λ for a given time ΔT inspected. Reduce limit by measuring for longer period or larger samples.

Binomial Distribution

Consider a stochastic process with two possible outcomes: yes/no, head/tail, success/failure,..., decay/remain intact

 \rightarrow specific probability for success = p and therefore for failure (1-p)

Initiate this process N times \rightarrow Question: What is the probability for *m* successes?

 p^{m} = probability for at least *m* successes (observations) among *N* trials $(1-p)^{N-m}$ = probability for *N-m* failures (survivals, not detected,...)

Probability for exactly m successes out of a total of N trials

$$P(m) = {\binom{N}{m}} \cdot p^m \cdot (1-p)^{N-m} \to \sum_m P(m) = 1 \qquad {\binom{N}{m}} = \frac{N!}{m!(N-m)!}$$

How many ways can *m* success events be 'chosen' out of $N ? \rightarrow$ Binomial coefficient

$$\left\langle m^{\nu} \right\rangle = \sum_{m=0}^{N} m^{\nu} \cdot P(m) = \sum_{m=0}^{N} m^{\nu} \cdot {\binom{N}{m}} p^{m} (1-p)^{N-m}$$

Mean value
$$\mu = \langle m \rangle = N \cdot p$$
; Variance $\sigma_m^2 = N \cdot p \cdot (1-p)$

Poisson Probability Distribution

Limit of binomial distribution

$$Lim_{p \to 0, N \to \infty} P_{binomial}(N, m) = P_{Poisson}(\mu, m)$$

Probability for observing m events when average is <m> = μ

$$P_{Poisson}(\mu,m) = \frac{\mu^m \cdot e^{-\mu}}{m!}$$

$$\frac{\mu = \langle m \rangle = N \cdot p}{and} \quad \text{for} \quad N \to \infty$$

For radioactive decays
$$[\Delta t^{-1}] \rightarrow p = \frac{A}{N}$$

 $p \ll 1 \rightarrow \sigma_m^2 \approx \langle m \rangle \# counts$

Observe N counts (events) \rightarrow \rightarrow statistical uncertainty is $\pm \sigma_N = \pm \sqrt{N}$

30

Curve Fitting to Data: Maximum Likelihood

Measurement of correlations between observables y and x: $\{x_{i,y_{i}}| i=1-N\}$ Hypothesis: $y(x) = f(c_{1},...,c_{m}; x)$. Only statistical errors. Parameters defining f: $\{c_{1},...,c_{m}\}$ $n_{dof}=N-m$ degrees of freedom for a "fit" of the data with f.

$$P_{i}(c_{1},..,c_{m};x) = \frac{1}{\sqrt{2\pi\sigma_{i}^{2}}} \cdot \exp\left\{-\frac{\left(y_{i}-f(c_{1},..,c_{m};x_{i})\right)^{2}}{2\sigma_{i}^{2}}\right\}$$

for every data point $\{y_i, x_i\}$, if f = true law

Minimize chi-squared by varying $\{c_1, ..., c_m\}$: $\partial \chi^2 / \partial c_i = 0$

31

Minimizing χ^2

Example: linear fit $f(a,b;x) = a + b \cdot x$ to data set $\{x_i, y_i, \sigma_i\}$

Minimize: $\chi^{2}(a,b) := \sum_{i=1}^{N} \frac{(\Delta y_{i})^{2}}{\sigma^{2}} = \sum_{i=1}^{N} \frac{(y_{i} - a - bx_{i})^{2}}{\sigma^{2}}$

$$0 = \frac{\partial}{\partial a} \chi^{2} (a, b) = \frac{\partial}{\partial a} \sum_{i=1}^{N} \frac{(y_{i} - a - bx_{i})^{2}}{\sigma_{i}^{2}} = -\sum_{i=1}^{N} \frac{2(y_{i} - a - bx_{i})}{\sigma_{i}^{2}}$$
$$0 = \frac{\partial}{\partial b} \chi^{2} (a, b) = -\sum_{i=1}^{N} \frac{2x_{i} (y_{i} - a - bx_{i})}{\sigma_{i}^{2}}$$

Equivalent to solving system of linear equations

$$a\sum_{i=1}^{N} \frac{1}{\sigma_{i}^{2}} + b\sum_{i=1}^{N} \frac{x_{i}}{\sigma_{i}^{2}} = \sum_{i=1}^{N} \frac{y_{i}}{\sigma_{i}^{2}}$$

$$a\sum_{i=1}^{N} \frac{x_{i}}{\sigma_{i}^{2}} + b\sum_{i=1}^{N} \frac{x_{i}^{2}}{\sigma_{i}^{2}} = \sum_{i=1}^{N} \frac{x_{i}y_{i}}{\sigma_{i}^{2}}$$

$$ad_{11} + bd_{12} = c_{1}$$

$$ad_{21} + bd_{22} = c_{2}$$

$$D = \begin{vmatrix} d_{11} & d_{12} \\ d_{21} & d_{22} \end{vmatrix}$$

$$\begin{vmatrix} a = \frac{1}{D} \begin{vmatrix} c_1 & d_{12} \\ c_2 & d_{22} \end{vmatrix} \quad b = \frac{1}{D} \begin{vmatrix} d_{11} & c_1 \\ d_{21} & c_2 \end{vmatrix} \\ \sigma_a^2 = \frac{1}{D} \sum \frac{x_i^2}{\sigma_i^2} \quad \sigma_b^2 = \frac{1}{D} \sum \frac{1}{\sigma_i^2} \end{vmatrix}$$

For more complex problems, solve by computer/numerical methods

Spectrum Analysis Statistics

Distribution of possible χ^2 for data sets that are distributed almost normally about a theoretical expectation (function) with n_{dof} degrees of freedom:

$$\frac{dP(\chi^2, n_{dof})}{d\chi^2} = \frac{(\chi^2)^{n_{dof}/2 - 1} e^{-\chi^2/2}}{2^{n_{dof}/2} \Gamma(n_{dof}/2)}$$

$$\frac{\langle \chi^2 \rangle = n_{dof}}{\Gamma(n) = (n - 1)!} = \frac{\sigma_{\chi^2}^2}{2} = 2n_{dof} \qquad n_{dof} \gg 1$$

$$\Gamma(n) = (n - 1)! = \text{Stirling's formula}$$

$$= 2.507e^{-n}n^{n - 1/2}(1 + 0.0833 / n)$$

Reduced χ^2 : $\chi_r^2 = \chi^2 / n_{dof} = \chi^2 / (N - m - 1)$ For $0 \le \chi_r^2 < 1.5 \rightarrow Confidence \ge 50\%$

Should be $P \gtrsim 0.5$ for a "acceptable" fit

W. Udo Schröder, 2022

34

W.

Example: Spectral Analysis

Adding or subtracting 2 Poisson distributed numbers N_1 and N_2 : Variances σ^2 always add $N := \left[N_1 \pm \sqrt{N_1} \right] \pm \left[N_2 \pm \sqrt{N_2} \right] \stackrel{\wedge}{=} \left(N_1 \pm N_2 \right) \pm \sqrt{N_1 + N_2}$ Std. dev $\sigma_1 \longrightarrow$ Std. dev $\sigma_2 \longrightarrow$ Std. dev $\sigma_{1\pm 2}$ Analyze peak in range channels 2500 -Gamma Line Spectrum $c_1 - c_2$: beginning of background left and right of peak 2000 $n = c_1 - c_2 + 1$. Total area $c_1 - c_2 \rightarrow N_{12}$ counts/channel 1500 $N(c_1)=B_1, N(c_2)=B_2,$ Peak Area A Linear (≈constant) background 1000 . $B = n(B_1 + B_2)/2$ Background B 500 -Peak area $A = \sum counts_i/ch$ В B_2 $A = N_{12} - n \cdot (B_1 + B_2) / 2$ Stat uncertainty std.dev. 430 410 400 C₁ Cb $\sigma_A = \sqrt{N_{12} + n \cdot (B_1 + B_2)} / 2$ channel number

37

Spectrum Analysis Statistics