PET Scan, γ-γ angular correlations Coincidence measurements, electronics Absolute activities

Möβbauer Effect

Recoil effects in γ emission and absorption Electronic setup

Applications: Electron-nuclear hyperfine interactions

Radiation Detectors for Medical Imaging

Positron emission tomographic (PET) virtual slice through patient's brain

Administer to patient labeled tracers, e.g., radioactive water: $H_2^{17}O$ radioactive acetate: $^{11}CH_3COOX$

Observe ¹⁷O or ¹¹C β^+ decay mostly via β^+ annihilation

$$e^{\scriptscriptstyle +} + e^{\scriptscriptstyle -}
ightarrow 2\,\gamma(511~keV)$$

Positron e⁺ (anti-matter) annihilates with electron e⁻ (its matter equivalent of the same mass) to produce pure energy (photons, γ -rays). Energy and momentum balance require back-to-back (180⁰) emission of 2 γ -rays of equal energy

γ Detectors (e.g., NaI(T/),...)

Positronium and e⁺-e⁻ Annihilation

 $r_0 = 2.818 \, fm, \, class. \, electron \, radius$

W. Udo Schröder, 2024

 $^{\circ}$

g-g Correlations

PET

Gamma-Gamma-Correlations

 \triangleleft

ANSEL Angular Correlation Experiment

Second correlation setup: NaI(Tl) vs. HPGe

W. Udo Schröder, 2024

E_v-Ungated Coincidence Measurement

Activity $A = \lambda N$ [disintegrations/time], simultaneous emission of (angular-) independent radiation types: i = 1, 2 in event, resp. detection probabilities P_i

Digital Logic Modules

W. Udo Schröder, 2024

Logic Chain Elements: Fast NIM Modules

00

g-g Correlations

PET

Gated E₁, E₂ Inclusive Measurement

PET (511keV V 511keV) or $\gamma - \gamma$ cascade (⁶⁰Ni), gates on γ_1 and γ_2 lines

W. Udo Schröder, 2024

δ

PET g-g Correlations

Gated E₁-E₂ Coincidence Measurement

PET (511keV Λ 511keV) or $\gamma-\gamma$ cascade (⁶⁰Ni), gates on γ_1 and γ_2 lines

Continuous dead time measurement

Example of event stream with signals (observables) measured simultaneously in 3 inputs of the Data Acquisition Module (DDC-8), trigger signal: inclusive OR (det1 V det2 V det3) Sample below displays 6 successive events, 3 of them are "coincidences."

With OR trigger, coincidence "resolution" is given by slow DAQ electronics. Fast front-end determination reduces random background.

PET

2D Parameter Coincidence Measurement

Only coincident $\gamma - \gamma$ events are accepted by DAQ.

Gamma-Gamma-Correlations

- Coincidence measurements, electronics PET Scan Absolute activities
- > $\gamma \gamma$ angular correlations in nuclear deexcitation cascades
- Möβbauer Effect
 - Recoil effects in γ emission and absorption Electronic setup
 - Applications: Electron-nuclear hyperfine interactions

Patterns of Propagating Electromagnetic Radiation Fields

PET g-g Correlations

Quantum mechanics of angular-momentum coupling of radiation to nuclear Ψ

Simple example: γ cascade $0 \rightarrow 1 \rightarrow 0$ Mostly $\Delta m = \pm 1$ emitted in z-direction

Det 1: Define z, select transition with maximum γ intensity for $\theta_1 = 0$.

Det 2: Measure emission patterns with respect to this z direction \rightarrow determine Δm .

$$W_{\gamma_{1}\gamma_{2}}(\theta) = W_{\Delta m=\pm 1}^{\gamma_{1}\gamma_{2}}(0) \cdot W_{\Delta m=\mp 1}^{\gamma_{2}}(\theta)$$
$$\propto W_{\Delta m=\mp 1}^{\gamma_{2}}(\theta) \propto \left|Y_{1}^{1}(\theta)\right|^{2}$$
$$\propto \left(1 + \frac{1}{2}\cos^{2}\theta\right)$$

General quantal expression for
$$\gamma - \gamma$$
 angular correlation

$$W_{\gamma_1 \gamma_2}(\theta) = \sum_{n=0}^{\ell} A_{2n} P_{2n} (\cos \theta) \propto \sum_{n=0}^{\ell} A'_{2n} \cos^{2n} \theta$$

$$\propto 1 + A'_2 \cos^2 \theta + \dots$$

Typically: $n \le 2$. Legendre Polynomials $P_n(\cos\theta)$

Example: Rotational E2- γ cascade, $\Delta m = \pm 2$ maximally emitted in z-direction

Experimental task: determine $A_{\gamma\gamma}$ for the Co-60 $\gamma\gamma$ cascade.