

Construction of Scintillation Counters

- •Scintillator $(q (\Delta E) \rightarrow h_V \rightarrow h_{V*})$
- •Light guide (*collect, average, direct*)
- •Photomultiplier $(h_{V*} \rightarrow e^{-} \rightarrow n e^{-})$
- •Base (power PM dynode chain, readout)

Scintillating Materials

gas (Ar, Xe,...) *Inorganic liquid* (*He*, *Xe*,...) solid (NaI, CsI, BGO, BaF₂...) Organic { liquid (xylene, benzene,..) solid (polystyrene,..)

Protect scintillator + light guide against external light (\rightarrow wrap in black tape/plastic)

BGO Detectors

Anti-Compton Shield detectors for highresolution γ spectroscopy with LN2 cooled Ge detectors

 \mathbb{C}

NaI(TI) and CsI(TI) Scintillation Detectors

Commercial NaI(Tl) detectors: Integral lines. (Harshaw)

Segmented CsI(Tl) detectors for LASSA array (deSouza)

Light Guides

Liouville Theorem: constant phase space volume (decrease cross section of guide \rightarrow loss of intensity)

Bending radius r large enough for total internal reflection

$$n^2-1>\left(d/2r+1\right)^2$$

n=refractive index d=diameter of guide

Electronic Photo-Multipliers

Criteria for choice:

- match photo cathode to scintillator light
- quantum efficiency
- •rise time
- entrance window (glass, quartz,..)
- •gain factor (1 $e^- \rightarrow n e^-$)
- dark current

PM Operation

W. Udo Schröder, 2021

Channel Electron Amplifiers

00

Applications of Channel Plate Multipliers

HI beam releases δ electrons in C foil, multiplied with multi-stage chevron

Examples of MCP e-Multipliers

Chevron mounted: El-Mul Technologies Ltd. W. Udo Schröder, 2021

Environment of γ Scintillation Measurement

Photon Response

Low-Z detector material \rightarrow no photo peak

Excitation electronic: VB \rightarrow CB (or below) Trapping of e- in activator states (TI) doping material, in gs of activator band e transition emits lower E_{γ}, not absorbed. Primary ionization and excitations of e- or excitons $(e^-,h^+) \rightarrow$ sequential deexcitation with different time constants.

Shifts spectrum to longer wave lengths

Advantage of inorganic scintillators: high density, stopping power \rightarrow good efficiency

Disadvantage of inorganic scintillators: slow response – µs decay time, "after glow", some are hygroscopic

Scintillation Mechanism: Organic Scintillators

Excitation of molecular states determined by π electrons: singlets (PP) and triplets (PP). Form vibrational band heads

Trapping of e- in triplet states, slow decay to S_0 ground state

Triplet excited (3:1) via ion recombination.

Decay via collisions *TT* → *SS*+*phonons* (τ~ 300 ns)

E1 excitation/radiation less transitions depends on ionization density (A,Z,E)

Light Output Response

Different radiation leads to different mix of fast and slow \rightarrow ID

Pulse shape discrimination retained electronically →

Pulse Shape Analysis

Energy

W. Udo Schröder, 2021

Particle ID via Pulse Shape Analysis

Bicron Corporation

have less light output (quenching)

INDRA Collaboration

A-Z Identification of LCP's: CsI(TI)with photodiode read-out and pulse shape discrimination (Chimera 14° (ring 6I)).

PID threshold for α and protons: 4-5 MeV proton equivalent energy. Good p, d, t discrimination > 20 MeV proton energy.

 $\frac{1}{2}$

ΔE -E Isotope Identification

Reverse collaboration, LNS report (2001).
L.. Tassan Got, Preprint IPNO-DR—01-008

A-Z identification (up to Z=9) based on a Bethe-Bloch formula, no need for energy calibration

Combine CsI with Si ΔE

CsI(TI) Light Output Parameterization

Non-Linear Light Output Response

 $E_{e}(E_{p}) = \begin{cases} \left(0.18MeV^{-1/2}\right)E_{p}^{3/2} & E_{p} < 5.25MeV\\ 0.63E_{p} - 1.10MeV & E_{p} \ge 5.25MeV \end{cases}$

Efficiency of *p*-Recoil NeutronDetectors

angle dependent n-p energy transfer \rightarrow continuous recoil energy spectrum

W. Udo Schröder, 2021

22

Activated Scintillation Process

SuperBall-Dwarf Calorimeter

SuperBall Scintillation Detector

25