

Detection Of Ionizing Radiation

Agenda

- Detection of ionizing radiation (photons and charged particles)
 - Solid-state detectors (Ge, Si)
 - Gas amplification detectors (Ionization chamber, proportional counter, Geiger counter)

Reading: Knoll Ch.12.I-12.IV

- Phenomenological model of matter ionization by particles
 - Electronic stopping
 - Bethe-Bloch Formula
 - Examples
 - Range and specific ionization
 - Stopping power curves, energy loss in thin foils

Reading: Knoll Ch. 6.I-6.V

• Spurious response of gas counters to photons

 \sim

W. Udo Schröder, 2022

Detector Design Principles

Ionization (charge separation) Detectors

- Ionization chambers (solid-state and gas)
- Gas Amplification Dets
 - Proportional counters
 - Avalanche counters
 - Geiger-Müller counters
- Cloud/bubble chambers
- Solid track detectors

Scintillation Detectors

- Phosphorescence counters
- Fluorescence counters (inorganic solid crystal scintillators, organic solid and liquid scintillators)
- Čherenkov counters

Associated Techniques

- Photo sensors and multipliers
- Charged-coupled devices
- Electronic pulse shape analysis
- Processing/acquisition electronics

 \mathcal{O}

Ionization Chambers (Solid-State and Gas Medium)

General principle: Radiation dissipates energy E via production of electron-ion (e⁻, h⁺) pairs in a medium enclosed between electrodes (Anode, Cathode). Electronic E signal picked up at A or C.

Gas volume between capacitor C electrodes. Energy $\boldsymbol{E} \rightarrow \boldsymbol{N}_{\text{ion pairs}} = E/\varepsilon_{\text{ip}}(\text{gas})$ Semiconductor *n-, p-, i-types Si, Ge, GaAs,..*

Band structure of solids VB gap CB.

Ionization lifts e^- up to CB, leaves hole h^+ in VB \rightarrow free charge carriers, produce $\Delta U(t) \sim E$.

Particles and Holes in Hyper Pure Semi-Conductors

Fermi gas of electrons (and holes) Fermion statistics @ temperature **T**:

 n_{e} , $n_{b} = \#$ of occupied e^{-} or h^{+} states $f_{e_{1}}f_{h} \leq 1$ occupation numbers $n_{e}(\varepsilon) = \frac{(2m)^{2/3} V}{2e^{2\pi 3}} \sqrt{\varepsilon} \cdot f_{e}(\varepsilon) \quad V = volume$ $n_{h}(\varepsilon) = \frac{(2m)^{2/3} V}{2\pi^{2} \hbar^{3}} \sqrt{|\varepsilon|} \cdot f_{h}(\varepsilon) \quad n_{e} = n_{h} !!$ $\varepsilon_F = \varepsilon_C - \varepsilon_G/2 = -\varepsilon_G/2$ for $\varepsilon_C := 0$ $f_e(\varepsilon) = \left| 1 + \exp\left(\frac{\varepsilon - \varepsilon_F}{kT}\right) \right|^{-1}$ $\xrightarrow{kT \approx 25 meV \ll \varepsilon_G} \exp\left(-\frac{\varepsilon + \varepsilon_G/2}{kT}\right)$ $\left\langle n_{e}^{2} \right\rangle = \left\langle n_{e}n_{h} \right\rangle = \left(\frac{\left(2m\right)^{2/3}V}{2\pi^{2}\hbar^{3}} \right)^{2} \left\langle \varepsilon \right\rangle \exp\left(-\frac{\varepsilon_{G}}{kT}\right)$ $\langle n_e \rangle_{rms} \sim \exp\left(-\frac{\varepsilon_G}{2kT}\right) \propto \frac{noise \ generating}{conductivity \ at \ T}$

Hyperpure (Intrinsic) Ge γ -ray Detectors

Hyper-pure Ge detectors for γ -rays use because of small gap E_G , cool to -77°C (LN₂). Simple band structure.

Ge Cryostate (Canberra)

W. Udo Schröder, 2022

00

onization/Radiation

Properties of Ge Detectors: Energy Resolution

Superior energy resolution, compared to NaI

 $\Delta E_{\gamma} \sim 0.5 \text{keV} @ E_{\gamma} = 100 \text{keV}$

Higher peak/Compton ratios

Size=dependent mall detection efficiencies of Ge detectors $\varepsilon \sim$ 10% \rightarrow solution: bundle in 4π arrays GammaSphere,Greta EuroGam, Tessa,...

W. Udo Schröder, 2022

တ

onization/Radiation Detectors

Alternative: Semiconductor Junctions and Barriers

Need detector for rad-induced charges \rightarrow otherwise, no free carriers allowed.

Difficult to make: perfect *i*-type (intrinsic) Si = chemical Group IV.

Trick: to make fully depleted Si \rightarrow SC junction *n-type Si*: by doping with *Li or* Group V e⁻ donor atoms (*P*, *Sb*, *As*), *p-type* Si: by doping with Group III e⁻ acceptor atoms (*B*, *Al*,...).

Junctions diffuse donors and acceptors into Si bloc from different ends \rightarrow interface \rightarrow e⁻/h⁺ annihilation \rightarrow space charge= depleted zone

Electrons move easily through the junction *from n to p but not from p to n*, and the reverse is true for holes.

6

Reverse Bias: *I*≈0 Anode p-type n-type Cathode silicon silicon cathode regative terminal positive terminal W. Udo Schröder, 2022

Surface Barrier Detectors

Ionization/Radiation Detectors

Next:

Gas Amplification Counters